• Title/Summary/Keyword: p-type silicon

Search Result 440, Processing Time 0.027 seconds

Electrochemical Etch-stop Characteristics of TMAH:IPA:Pyrazine Solutions (TMAH/IPA/Pyrazine용액에 있어서 전기화학적 식각정지 특성)

  • Chung, Gwiy-Sang;Lee, Chae-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.147-151
    • /
    • 2000
  • This paper presents the electrochemical etch-stop characteristics of single-crystal silicon in a tetramethyl ammonium hyciroxide(TMAH):isopropyl alcohol(IPA):pyrazine solution. Addition of pyrazine to a TMAH:IPA etchant increases the etch-rate of (100) silicon, thus the elapsed time for etch-stop was shortened. The current-voltage(I-V) characteristics of n- and p-type silicon in a TMAH:IPA:pyrazine solution were obtained, respectively. Open circuit potential(OCP) and passivation potential(PP) of n- and p-type silicon, respectively, were obtained and applied potential was selected between n- and p-type silicon PP. The electrochemical etch-stop is applied to the fabrication of 801 microdiaphragms having $20\;{\mu}m$ thickness on a 5-inch silicon wafer. The averge thicknesses of 801 microdiaphragms fabricated on the one wafer were $20.03\;{\mu}m$ and standard deviation was ${\pm}0.26{\mu}m$. The silicon surface of the etch-stopped microdiaphragm was extremely flat without noticeable taper or other nonuniformities. The benefits of the electrochemical etch-stop in a TMAH:IPA:pyrazine solution become apparent when reproducibility in the microdiaphragm thickness for mass production is considered. These results indicate that the electrochemical etch-stop in a TMAH:IPA:pyrazine solution provides a powerful and versatile alternative process for fabricating high-yield silicon microdiaphragms.

  • PDF

The structure and optical properties of n-type and p-type porous silicon (n-type과 p-type 다공성 실리콘의 구조와 광학적 특성에 관한 연구)

  • 박현아;오재희;박동화;안화승;태원필;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.257-262
    • /
    • 2003
  • The structure and optical properties of n-type and p-type porous silicon (PS) prepared by the chemical etching in the light and the dark, respectively, are reported in this paper. Microstructural features of the samples are mainly investigated by SEM, AFM XRDGI techniques. Also, their optical properties are investigated by photoluminescence (PL) and Fourier transform infrared absorption measurements. In the n-type PS, the room temperature photoluminescence is observed in a visible range from 500 nm to 650 nm in contrast to that in the blue region (400∼650 nm) in p-type PS. Further, semi-transparent Cu films in thickness range of ∼40 nm are deposited by rf-magnetron sputtering on PS to investigate the I-V characteristics of the samples.

Boron Detection Technique in Silicon Thin Film Using Dynamic Time of Flight Secondary Ion Mass Spectrometry

  • Hossion, M. Abul;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.26-30
    • /
    • 2021
  • The impurity concentration is a crucial parameter for semiconductor thin films. Evaluating the impurity distribution in silicon thin film is another challenge. In this study, we have investigated the doping concentration of boron in silicon thin film using time of flight secondary ion mass spectrometry in dynamic mode of operation. Boron doped silicon film was grown on i) p-type silicon wafer and ii) borosilicate glass using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using well-tuned SIMS measurement recipe, we have detected the boron counts 101~104 along with the silicon matrix element. The secondary ion beam sputtering area, sputtering duration and mass analyser analysing duration were used as key variables for the tuning of the recipe. The quantitative analysis of counts to concentration conversion was done following standard relative sensitivity factor. The concentration of boron in silicon was determined 1017~1021 atoms/㎤. The technique will be useful for evaluating distributions of various dopants (arsenic, phosphorous, bismuth etc.) in silicon thin film efficiently.

Comparative Study on Two Types of Silicon p-n Junction for Photovoltaic and Electronvoltaic Cells

  • Lee, Hee-Yong;Lee, Woo-Kong
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 1973
  • The photovoltaic and the electronvoltaic cells have been obtained by forming Sb-implanted n- on p-type and In-implanted p- on n-type silicon p-n junctions Such shallow implantations into silicon wafers due to each dopant were done by the VDH-Implanter. The two types of the silicon p-n junction for these cells have shown special features on their various characteristics to be fitted for the direct energy conversions. The results of the comparative study on both of these cells are described in this article.

  • PDF

Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells (고 안정화 프로터결정 실리콘 다층막 태양전지)

  • Lim Koeng Su;Kwak Joong Hwan;Kwon Seong Won;Myong Seung Yeop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

Development of a Contact Type Temperature Sensor Using Single Crystal Silicon Thermopile (단결정 실리콘 써모파일을 이용한 접촉형 온도센서 개발)

  • Lee, Young-Tae;Lee, You-Na;Lee, Wang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.369-373
    • /
    • 2013
  • In this paper, we developed contact type temperature sensor with single crystal silicon strip thermopile. This sensor consists of 15 p-type single crystal silicon strips, 17 n-types and contact electrodes on silicon dioxide silicon membrane. The result of electromotive force measuring showed very good characteristic as $15.18mV/^{\circ}C$ when temperature difference between the two ends of the thermopile occurs by applying thermal contact on the thermopile which was fabricated with silicon strip of $200{\mu}m$ length, $20{\mu}m$ width, $1{\mu}m$ thickness.

A Study on the Experimental Fabrication and Analysis of MOS Photovoltaic Solar Energy Conversion Device (MOS 광전변화소자의 식적에 관한 연구)

  • Ko, Gi-Man;Park, Sung-Hui;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.6
    • /
    • pp.203-211
    • /
    • 1984
  • MOS silicon solar cells have been developed using the fixed (interface) charge inherent to thermally oxidized silicon to induce an n-type inversion layer in 1-10 ohm-cm p-type silicon. Higher collection efficiencies are predicted than for diffused junction cells. Without special precautions a conversion efficiency of 14.2% is obtained. A MOS silicon solar cell is described in which an inversion layer forms the active area which is then contacted by means of a MOS grid. The highest efficiency is obtained when the resistivity of the substrate is high.

  • PDF

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Neutral Beam assisted Chemical Vapor Deposition at Low Temperature for n-type Doped nano-crystalline silicon Thin Film

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Yu, Seok-Jae;Lee, Bong-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.52-52
    • /
    • 2011
  • A novel deposition process for n-type nanocrystalline silicon (n-type nc-Si) thin films at room temperature has been developed by adopting the neutral beam assisted chemical vapor deposition (NBa-CVD). During formation of n-type nc-Si thin film by the NBa-CVD process with silicon reflector electrode at room temperature, the energetic particles could induce enhance doping efficiency and crystalline phase in polymorphous-Si thin films without additional heating on substrate; The dark conductivity and substrate temperature of P-doped polymorphous~nano crystalline silicon thin films increased with increasing the reflector bias. The NB energy heating substrate(but lower than $80^{\circ}C$ and increase doping efficiency. This low temperature processed doped nano-crystalline can address key problem in applications from flexible display backplane thin film transistor to flexible solar cell.

  • PDF