• Title/Summary/Keyword: p-adic number

Search Result 19, Processing Time 0.019 seconds

SOME REMARKS ON A q-ANALOGUE OF BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.221-236
    • /
    • 2002
  • Using the p-adic q-integral due to T. Kim[4], we define a number B*$_{n}$(q) and a polynomial B*$_{n}$(q) which are p-adic q-analogue of the ordinary Bernoulli number and Bernoulli polynomial, respectively. We investigate some properties of these. Also, we give slightly different construction of Tsumura's p-adic function $\ell$$_{p}$(u, s, $\chi$) [14] using the p-adic q-integral in [4].n [4].

A remark on p-adic q-bernoulli measure

  • Kim, Han-Soo;Lim, Pil-Sang;Kim, Taekyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • Throughout this paper $Z^p, Q_p$ and C_p$ will denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of $Q_p$, respectively. Let $v_p$ be the normalized exponential valuation of $C_p$ with $$\mid$p$\mid$_p = p^{-v_p (p)} = p^{-1}$. We set $p^* = p$ for any prime p > 2 $p^* = 4 for p = 2$.

  • PDF

NEWTON-RAPHSON METHOD FOR COMPUTING p-ADIC ROOTS

  • Yeo, Gwangoo;Park, Seong-Jin;Kim, Young-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.575-582
    • /
    • 2015
  • The Newton-Raphson method is used to compute the q-th roots of a p-adic number for a prime number q. The sufficient conditions for the convergence of this method are obtained. The speed of its convergence and the number of iterations to obtain a number of corrected digits in the approximation are calculated.

APPLICATIONS OF CLASS NUMBERS AND BERNOULLI NUMBERS TO HARMONIC TYPE SUMS

  • Goral, Haydar;Sertbas, Doga Can
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1463-1481
    • /
    • 2021
  • Divisibility properties of harmonic numbers by a prime number p have been a recurrent topic. However, finding the exact p-adic orders of them is not easy. Using class numbers of number fields and Bernoulli numbers, we compute the exact p-adic orders of harmonic type sums. Moreover, we obtain an asymptotic formula for generalized harmonic numbers whose p-adic orders are exactly one.

INTEGRAL BASES OVER p-ADIC FIELDS

  • Zaharescu, Alexandru
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.509-520
    • /
    • 2003
  • Let p be a prime number, $Q_{p}$ the field of p-adic numbers, K a finite extension of $Q_{p}$, $\bar{K}}$ a fixed algebraic closure of K and $C_{p}$ the completion of K with respect to the p-adic valuation. Let E be a closed subfield of $C_{p}$, containing K. Given elements $t_1$...,$t_{r}$ $\in$ E for which the field K($t_1$...,$t_{r}$) is dense in E, we construct integral bases of E over K.

ON THE p-ADIC VALUATION OF GENERALIZED HARMONIC NUMBERS

  • Cagatay Altuntas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.933-955
    • /
    • 2023
  • For any prime number p, let J(p) be the set of positive integers n such that the numerator of the nth harmonic number in the lowest terms is divisible by this prime number p. We consider an extension of this set to the generalized harmonic numbers, which are a natural extension of the harmonic numbers. Then, we present an upper bound for the number of elements in this set. Moreover, we state an explicit condition to show the finiteness of our set, together with relations to Bernoulli and Euler numbers.

RELATIVE (p, q) - 𝜑 ORDER BASED SOME GROWTH ANALYSIS OF COMPOSITE p-ADIC ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.361-370
    • /
    • 2021
  • Let 𝕂 be a complete ultrametric algebraically closed field and 𝓐 (𝕂) be the 𝕂-algebra of entire function on 𝕂. For any p-adic entire functions f ∈ 𝓐 (𝕂) and r > 0, we denote by |f|(r) the number sup {|f (x)| : |x| = r} where |·|(r) is a multiplicative norm on 𝓐 (𝕂). In this paper we study some growth properties of composite p-adic entire functions on the basis of their relative (p, q)-𝜑 order where p, q are any two positive integers and 𝜑 (r) : [0, +∞) → (0, +∞) is a non-decreasing unbounded function of r.

ON BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.391-410
    • /
    • 2000
  • In the complex case, we construct a q-analogue of the Riemann zeta function q(s) and a q-analogue of the Dirichlet L-function L(s,X), which interpolate the 1-analogue Bernoulli numbers. Using the properties of p-adic integrals and measures, we show that Kummer type congruences for the q-analogue Bernoulli numbers are the generalizations of the usual Kummer congruences for the ordinary Bernoulli numbers. We also construct a q0analogue of the p-adic L-function Lp(s, X;q) which interpolates the q-analogue Bernoulli numbers at non positive integers.

  • PDF

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.