Acknowledgement
We are grateful to the referee for the comments which improved the presentation and quality of the paper.
References
- E. Alkan, H. Goral, and D. C. Sertba,s, Hyperharmonic numbers can rarely be integers, Integers 18 (2018), Paper No. A43, 15 pp.
- C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical J. 1 (1819), 46-49.
- D. W. Boyd, A p-adic study of the partial sums of the harmonic series, Experiment. Math. 3 (1994), no. 4, 287-302. http://projecteuclid.org/euclid.em/1048515811 1048515811
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York, 1996. https://doi.org/10.1007/978-1-4612-4072-3
- A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), no. 3, 249-257. https://doi.org/10.1016/0012-365X(90)90234-9
- I. M. Gessel, Wolstenholme revisited, Amer. Math. Monthly 105 (1998), no. 7, 657-658. https://doi.org/10.2307/2589252
- J. W. L. Glaisher, On the residues of the sums of products of the first p - 1, and their powers, to modulus p2 or p3, Q. J. Math. 31 (1900), 321-353.
- J. W. L. Glaisher, On the residues of the sums of the inverse powers of numbers in arithmetical progression, Q. J. Math. 32 (1901), 271-288.
- H. Goral and D. C. Sertbas, Almost all hyperharmonic numbers are not integers, J. Number Theory 171 (2017), 495-526. https://doi.org/10.1016/j.jnt.2016.07.023
- H. Goral and D. C. Sertbas, Divisibility properties of hyperharmonic numbers, Acta Math. Hungar. 154 (2018), no. 1, 147-186. https://doi.org/10.1007/s10474-017-0766-7
- H. Goral and D. C. Sertbas, A congruence for some generalized harmonic type sums, Int. J. Number Theory 14 (2018), no. 4, 1033-1046. https://doi.org/10.1142/S1793042118500628
- H. Goral and D. C. Sertbas, Euler sums and non-integerness of harmonic type sums, Hacet. J. Math. Stat. 49 (2020), no. 2, 586-598. https://doi.org/10.15672/hujms.544489
- H. Goral and D. C. Sertbas, Applications of class numbers and Bernoulli numbers to harmonic type sums, Bull. Korean Math. Soc. 58 (2021), no. 6, 1463-1481. https://doi.org/10.4134/BKMS.b201045
- E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), no. 2, 350-360. https://doi.org/10.2307/1968791
- R. Mestrovic, Wolstenholme's theorem: Its generalizations and extensions in the last hundred and fifty years (1862-2012), https://arxiv.org/abs/1111.3057.
- R. Mestrovic, A search for primes p such that the Euler number Ep-3 is divisible by p, Math. Comp. 83 (2014), no. 290, 2967-2976. https://doi.org/10.1090/S0025-5718-2014-02814-7
- P. Ribenboim, 13 lectures on Fermat's last theorem, Springer-Verlag, New York, 1979.
- SageMath, the Sage Mathematics Software System (Version 8.3), The Sage Developers, 2018. http://www.sagemath.org
- C. Sanna, On the p-adic valuation of harmonic numbers, J. Number Theory 166 (2016), 41-46. https://doi.org/10.1016/j.jnt.2016.02.020
- D. C. Sertba,s, Hyperharmonic integers exist, C. R. Math. Acad. Sci. Paris 358 (2020), no. 11-12, 1179-1185. https://doi.org/10.5802/crmath.137
- J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-39.
- B.-L. Wu and Y.-G. Chen, On certain properties of harmonic numbers, J. Number Theory 175 (2017), 66-86. https://doi.org/10.1016/j.jnt.2016.11.027
- J. Zhao, Finiteness of p-divisible sets of multiple harmonic sums, Ann. Sci. Math. Quebec 36 (2012), no. 1, 259-283 (2013).