• Title/Summary/Keyword: p-adic invariant q-integral

Search Result 6, Processing Time 0.023 seconds

On the historical investigation of p-adic invariant q-integral on $\mathbb{Z}_p$ (p-진 q-적분의 변천사에 대한 고찰)

  • Jang, Lee-Chae;Seo, Jong-Jin;Kim, Tae-Kyun
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.145-160
    • /
    • 2009
  • In the end of 20th century, the concept of p-adic invariant q-integral was introduced by Taekyun Kim. The p-adic invariant q-integral is the extension of Jackson's q-integral on complex space. It is also considered as the answer of the question whether the ultra non-archimedian integral exists or not. In this paper, we investigate the background of historical mathematics for the p-adic invariant q-integral on $Z_p$ and the trend of the research in this field at present.

  • PDF

A New Approach to the Lebesgue-Radon-Nikodym Theorem. with respect to Weighted p-adic Invariant Integral on ℤp

  • Rim, Seog-Hoon;Jeong, Joo-Hee
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.3
    • /
    • pp.299-306
    • /
    • 2012
  • We will give a new proof of the Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on $Z_p$, using Mahler expansion of continuous functions, studied by the authors in 2012. In the special case, q = 1, we can derive the same result as in Kim, 2012, Kim et al, 2011.

A NOTE ON THE WEIGHTED q-HARDY-LITTLEWOOD-TYPE MAXIMAL OPERATOR WITH RESPECT TO q-VOLKENBORN INTEGRAL IN THE p-ADIC INTEGER RING

  • Araci, Serkan;Acikgoz, Mehmet
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.365-372
    • /
    • 2013
  • The essential aim of this paper is to define weighted $q$-Hardylittlewood-type maximal operator by means of $p$-adic $q$-invariant distribution on $\mathbb{Z}_p$. Moreover, we give some interesting properties concerning this type maximal operator.

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS

  • SIMSEK YILMAZ
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.111-131
    • /
    • 2006
  • The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on $\mathbb{Z}_p$, we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.