• Title/Summary/Keyword: ozone concentration

Search Result 758, Processing Time 0.027 seconds

A Study on the Luminescent Characteristics of YPO4:Pr3+ Phosphor by the Content Ratio of Pr6O11 and Calcination Temperature (Pr6O11의 함량 및 열처리 조건에 따른 YPO4:Pr3+ 형광체의 발광 특성 연구)

  • Min Jun Kim;Seong Eui Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.68-73
    • /
    • 2024
  • In this study, the praseodymium-doped yttrium phosphate (YPO4:Pr3+) powder, which is well known for its high luminescent efficiency, and long life in the UV range, was synthesized with various content ratios of Pr6O11 and calcination temperature. Crystal structure and luminescent properties of various phosphor powders based on different concentrations and calcination conditions were characterized by XRD (X-Ray Diffraction) and PL (photoluminescence) spectrometers. From the XRD analysis, the structure of YPO4:Pr3+ which is calcinated at 1,200℃ was stable tetragonal phase and crystal size was calculated about 25 nm by Scherrer equation. PL emission of YPO4:Pr3+ with a different content ratio of Pr6O11 by excitation λexc=250 nm shows that 0.75 mol% phosphor powder has maximum PL intensity and PL decreases with the increase of the ratio of Pr6O11 up to 1.25 mol% which is caused by changes of crystallinity of phosphor powders. With increasing dopant ratio, photo-luminescence Emission decreases due to Concentration quenching, which is commonly observed in phosphors. Currently, 0.75 mol% is considered the optimal doping concentration. A hybrid ultraviolet-emitting device incorporating YPO4:Pr3+ fluorescent material with plasma discharge was fabricated to enhance UV germicidal effects while minimizing ozone generation. UV emission from the plasma discharge device was shown at about 200 nm and 350 nm which caused additional emission of the regions of 250 nm, 315 nm, and 370 nm from the YPO4:Pr3+ phosphor.

Long-term Trend Analysis of NOx and SOx over in East Asia Using OMI Satellite Data and National Emission Inventories (2005-2015) (OMI 위성 자료와 국가 배출량 자료를 활용한 동아시아의 NOx, SOx 변화 장기 분석(2005-2015))

  • Seo, Jeonghyeon;Yoon, Jongmin;Choo, Gyo-Hwang;Kim, Deok-rae;Lee, Dong-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.121-137
    • /
    • 2020
  • Data from the Ozone Monitoring Instrument (OMI) satellite and national emission inventories were used in this study to analyze air quality in East Asia and estimate the impact of domestic and foreign emissions on South Korea's air quality, based on which future emissions were predicted. The concentration trends of nitrogen dioxide (NO2) and sulfur dioxide (SO2) in East Asia from 2005 to 2015 showed that both substances were highest in North East China (NEC), followed by South East China (SEC) and Seoul Metropolitan Area (SMA). The average SO2 concentration was 1.63 times higher in NEC than in SMA. Analysis on the ratios of NO2/SO2 and NOx/SOx provides an indirect picture of the effect of transboundary air pollutants on atmospheric composition in Korea. The concentration ratio of NO2/SO2 in all study areas peaked in 2013 and SMA's emission ratio of NOx/SOx increased in 2015 by over 22% from 2013. Despite the reduction in domestic emissions, the concentration-to-emission ratios (NO2/NOx, SO2/SOx) rose gradually, which implies that other factors besides domestic emissions (e.g., foreign sources, lifetime, etc.) influence air quality in SMA. We estimated future emissions of NOx and SOx in SMA to be 296.2 and 39.0 ktons in 2025 and 284.4 and 33.8 ktons in 2035, respectively. Application of the inter-comparison techniques of this study to the data from the Geostationary Environment Monitoring Instrument (GEMS) is expected to provide concrete information which can be used to improve national emission inventories and figure out factors and sources that affect domestic air quality.

Short-term Effects of Ambient Air Pollution on Emergency Department Visits for Asthma: An Assessment of Effect Modification by Prior Allergic Disease History

  • Noh, Juhwan;Sohn, Jungwoo;Cho, Jaelim;Cho, Seong-Kyung;Choi, Yoon Jung;Kim, Changsoo;Shin, Dong Chun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.49 no.5
    • /
    • pp.329-341
    • /
    • 2016
  • Objectives: The goal of this study was to investigate the short-term effect of ambient air pollution on emergency department (ED) visits in Seoul for asthma according to patients' prior history of allergic diseases. Methods: Data on ED visits from 2005 to 2009 were obtained from the Health Insurance Review and Assessment Service. To evaluate the risk of ED visits for asthma related to ambient air pollutants (carbon monoxide [CO], nitrogen dioxide [$NO_2$], ozone [$O_3$], sulfur dioxide [$SO_2$], and particulate matter with an aerodynamic diameter <$10{\mu}m$ [$PM_{10}$]), a generalized additive model with a Poisson distribution was used; a single-lag model and a cumulative-effect model (average concentration over the previous 1-7 days) were also explored. The percent increase and 95% confidence interval (CI) were calculated for each interquartile range (IQR) increment in the concentration of each air pollutant. Subgroup analyses were done by age, gender, the presence of allergic disease, and season. Results: A total of 33 751 asthma attack cases were observed during the study period. The strongest association was a 9.6% increase (95% CI, 6.9% to 12.3%) in the risk of ED visits for asthma per IQR increase in $O_3$ concentration. IQR changes in $NO_2$ and $PM_{10}$ concentrations were also significantly associated with ED visits in the cumulative lag 7 model. Among patients with a prior history of allergic rhinitis or atopic dermatitis, the risk of ED visits for asthma per IQR increase in $PM_{10}$ concentration was higher (3.9%; 95% CI, 1.2% to 6.7%) than in patients with no such history. Conclusions: Ambient air pollutants were positively associated with ED visits for asthma, especially among subjects with a prior history of allergic rhinitis or atopic dermatitis.

Comparison of Dye Removal Performance and Oxidants Formation of Insoluble Electrode (불용성 전극의 Dye 제거 성능과 산화제 생성 비교)

  • Yoo, Young-Eok;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1273-1284
    • /
    • 2011
  • The aim of this research was to evaluate the performance of insoluble electrode for the purpose of degradation of Rhodamine B (RhB) and oxidants generation [N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), $O_3$, $H_2O_2$, free Cl, $ClO_2$)]. Methods: Four kinds of electrodes were used for comparison: DSA (dimensional stable anode; Pt and JP202 electrode), Pb and boron doping diamond (BDD) electrode. The effect of applied current (0.5~2.5 A), electrolyte type (NaCl, KCl and $Na_2SO_4$) and electrolyte concentration (0.5~3.5 g/L) on the RNO degradation were evaluated. Experimental results showed that the order of RhB removal efficiency lie in: JP202 > Pb > BDD ${\fallingdotseq}$ > Pt. However, when concerned the electric power on maintaining current of 1 A during electrolysis reaction, the order of RhB removal efficiency was changed: JP202 > Pt ${\fallingdotseq}$ Pb > BDD. The total generated oxidants ($H_2O_2$, $O_3$, free Cl, $ClO_2$) concentration of 4 electrodes was Pt (6.04 mg/W) > JP202 (4.81 mg/W) > Pb (3.61 mg/W) > BDD (1.54 mg/W), respectively. JP202 electrode was the best electrode among 4 electrodes from the point of view of performance and energy consumption. Regardless of the type of electrode, RNO removal of NaCl and KCl (chlorine type electrolyte) were higher than that of the $Na_2SO_4$ (sulfuric type electrolyte) RNO removal. Except BDD electrode, RhB degradation and creation tendency of oxidants such as $H_2O_2$, $O_3$, free Cl and $ClO_2$, found that do not match. RNO degradation tendency were considered a simple way to decide the method which is simple it will be able to determinate the electrode where the organic matter decomposition performance is superior. As the added NaCl concentration was increases, the of hydrogen peroxide and ozone concentration increases, and this was thought to increase the quantity of OH radical.

Diurnal Variations of O3 and NO2 Concentrations in an Urban Park in Summer: Effects of Air Temperature and Wind Speed (여름철 도심 공원의 O3과 NO2 농도의 일변화: 기온과 풍속의 영향)

  • Han, Beom-Soon;Kwak, Kyung-Hwan;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.536-546
    • /
    • 2016
  • The diurnal variations of $O_3$ and $NO_2$ in an urban park and the effects of air temperature and wind speed on the diurnal variations are investigated. $O_3$ and $NO_2$ concentrations were observed at a site in an urban park of Seoul from 27 July 2015 to 9 August 2015. The $O_3$ and $NO_2$ concentrations observed in the urban park are compared to those observed at the Gangnam air quality monitoring station (AQMS). The $O_3$ concentration is higher in the urban park than at the Gangnam AQMS in the daytime because the amount of $O_3$ dissociated by NO is smaller as well as partly because the amount of $O_3$ produced in the oxidation process of biogenic volatile organic compounds (VOCs) is larger in the urban park than at the Gangnam AQMS. The $NO_2$ concentration is lower in the urban park than at the Gangnam AQMS during day and night because the observation site in the urban park is relatively far from roads where $NO_x$ is freshly emitted from vehicles. The difference in $NO_2$ concentration is larger in the daytime than in the nighttime. To examine the effects of air temperature and wind speed on the diurnal variations of $O_3$ and $NO_2$, the observed $O_3$ and $NO_2$ concentrations are classified into high or low air temperature and high or low wind speed days. The high $O_3$ and $NO_2$ concentrations in the daytime appear for the high air temperature and low wind speed days. This is because the daytime photochemical processes are favorable when the air temperature is high and the wind speed is low. The scatter plots of the daytime maximum $O_3$ and minimum $NO_2$ concentrations versus the daytime averages of air temperature and wind speed show that the daytime maximum $O_3$ and minimum $NO_2$ concentrations tend to increase as the air temperature increases or the wind speed decreases. The daytime maximum $O_3$ concentration is more sensitive to the changes in air temperature and wind speed in the urban park than at the Gangnam AQMS.

Process Optimization of PECVD SiO2 Thin Film Using SiH4/O2 Gas Mixture

  • Ha, Tae-Min;Son, Seung-Nam;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.434-435
    • /
    • 2012
  • Plasma enhanced chemical vapor deposition (PECVD) silicon dioxide thin films have many applications in semiconductor manufacturing such as inter-level dielectric and gate dielectric metal oxide semiconductor field effect transistors (MOSFETs). Fundamental chemical reaction for the formation of SiO2 includes SiH4 and O2, but mixture of SiH4 and N2O is preferable because of lower hydrogen concentration in the deposited film [1]. It is also known that binding energy of N-N is higher than that of N-O, so the particle generation by molecular reaction can be reduced by reducing reactive nitrogen during the deposition process. However, nitrous oxide (N2O) gives rise to nitric oxide (NO) on reaction with oxygen atoms, which in turn reacts with ozone. NO became a greenhouse gas which is naturally occurred regulating of stratospheric ozone. In fact, it takes global warming effect about 300 times higher than carbon dioxide (CO2). Industries regard that N2O is inevitable for their device fabrication; however, it is worthwhile to develop a marginable nitrous oxide free process for university lab classes considering educational and environmental purpose. In this paper, we developed environmental friendly and material cost efficient SiO2 deposition process by substituting N2O with O2 targeting university hands-on laboratory course. Experiment was performed by two level statistical design of experiment (DOE) with three process parameters including RF power, susceptor temperature, and oxygen gas flow. Responses of interests to optimize the process were deposition rate, film uniformity, surface roughness, and electrical dielectric property. We observed some power like particle formation on wafer in some experiment, and we postulate that the thermal and electrical energy to dissociate gas molecule was relatively lower than other runs. However, we were able to find a marginable process region with less than 3% uniformity requirement in our process optimization goal. Surface roughness measured by atomic force microscopy (AFM) presented some evidence of the agglomeration of silane related particles, and the result was still satisfactory for the purpose of this research. This newly developed SiO2 deposition process is currently under verification with repeated experimental run on 4 inches wafer, and it will be adopted to Semiconductor Material and Process course offered in the Department of Electronic Engineering at Myongji University from spring semester in 2012.

  • PDF

Removal Characteristics of Natural Organic Matter and Taste and Odor by Advanced Water Treatment Process around the Han River Water Supply System (한강수계 고도정수처리 공정에서의 유기물과 맛·냄새의 제거특성)

  • Jae-Lim Lim;Lee, Kyung-Hyuk;Kim, Seong-Su;Chae, Seon-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • The water treatment plants in Seoul Metropolitan Area, which are under Korea Water Resources Corporation(KOWACO)'s management, take water from Paldang Reservoir in Han River System for drinking water supply. There are taste and odor (T&O) problems in the finished water because the conventional treatment processes do not effectively remove the T&O compounds. As part of countermeasures for taste and odor control, KOWACO is planning to introduce advanced water treatment process such as ozone and GAC in near future. This study evaluated the removal characteristics of T&O and dissolved organic matter (DOM) to find design and operation parameters of advanced water treatment processes in a pilot-scale treatment plant. The GAC adsorption capacity for DOC in the two GAC system (GAC and $O_3$-GAC) at an EBCT of 14min was mostly exhausted after 9months. The differency of the removal efficiency of DOC between $O_3$-GAC and GAC increased with increasing operation time because the bioactivity in $O_3$-GAC process was enhanced by post-ozone process. Removal by conventional treatment was unable to reach the target TON(threshold odor number) of 3 but GAC systems at an EBCT(empty bed contact time) of 14 min were able to archive the target with few exception. During the high T&O episodes, PAC as a pretreatment together with GAC could be useful option for T&O control. However, substantial TON removal continued for more than two year (> 90,000 bed volumes). At the spiking of less concentration 26 to 61 ng/L in the influent of GAC systems, GAC absorber and $O_3$-GAC processes could meet the treatment target. The better spike control after 12 and 19 months of operation compared to that after 7 months of operation is a strong indication of biological control. The results presented in this study had shown that $O_3$-GAC process was found to be more effective for T&O control than GAC process. And the main removal mechanism in GAC systems were adsorption capacity and biodegradation.

Generation of Chemically Active Species in Hybrid Gas-Liquid Discharges (기체-액체 혼합 방전에 의한 화학적 활성종 생성 특성)

  • Chung, Jae-Woo;Locke, Bruce R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.556-563
    • /
    • 2007
  • We carried out a laboratory scale experiment about the characteristics of chemically active species produced in hybrid gas-liquid discharges. The electrode configuration which had high voltage electrode in the gas phase and ground electrode in the liquid was utilized while high voltage electrode has been typically positioned in the liquid in other studies. Our electrode was configured in such a way as to increase the energy efficiency of chemical reactions by creating a higher electrical field strength and a narrower pulse width than the typical electrode configuration. The highest ozone concentration was obtained at 45 kV which was the medium value in operating voltages. The decrease of solution conductivity increased the resistance of liquid phase and the electric field strength through the gas phase, so ozone gene-ration rate was enhanced. The increase of voltage promoted the production rate of hydrogen peroxide by increasing the electric field strength. In a lower voltage, the increase of solution conductivity increased the degradation rate of $H_2O_2$, so the $H_2O_2$ generation rate decreased. On the other hand, the effects of UV radiation, shock waves etc. increased the $H_2O_2$ generation rate as the solution conductivity increased. A higher rate of $H_2O_2$ generation can be achieved by mixing argon to oxygen which generates a stronger and more stable discharges.

Distributions and Behaviors of H2O2 Above the Yellow Sea in the Years Between 2002 and 2004 (2002년에서 2004년 동안 서해상공에서 관측된 과산화수소의 농도분포 및 거동)

  • Kim Y.M.;Shin S.A.;Han J.S.;Lee M.H.;Kim J.A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.689-697
    • /
    • 2005
  • Hydrogen peroxide is a reservoir of OH radical which is the powerful oxidant in the atmosphere. Therefore, the status of the oxidizing atmosphere could be reflected on the concentration of $H_{2}O_{2}$. In this study, the distribution of $H_{2}O_{2}$ was determined during the intensive aircraft measurements over the Yellow sea in March, December 2002, April, November 2003 and March, October 2004. Flights covered from $124^{circ}E\;to\;129^{circ}E\;and\;35^{circ}N\;to\;37^{circ}N$, and extending to 3,000 m. The flight patterns were set properly to assess the altitudinal and longitudinal distribution for $H_{2}O_{2}$. $H_{2}O_{2}$ was extracted onto aqueous solution using a continuously flowing glass coil and analyzed by a high performance liquid chromatography (HPLC) accompanied with a fluorescence detector using postcolumn enzyme derivatization. Mixing ratios of $O_{3},\;NO_{x}\;and\;SO_{2}$ were measured in real time by commercial analysis instruments. Along the heights, the maximum concentration of $H_{2}O_{2}$ appeared around 1,500 m then gradually decreased with increasing altitude. The vertical behavior of ozone showed the similar trend to $H_{2}O_{2}$. The mean mixing ratio of $NO_{x}$ was about 2 ppbv and not showed clear vertical distribution patterns. The mean value of was the same as $NO_{x}$ however $SO_{2}$ appeared extreme concentration in low altitude. $H_{2}O_{2}\;and\;O_{3}$ showed even longitudinal distribution however $NO_{x}$ mixing ratio in land ($127^{circ}E$) was much higher than over the sea. $SO_{2}$ rather decreased with increasing longitude. $H_{2}O_{2}$ was in inverse proportion to $NO_{x}$ in spring and summer and $SO_{2}$ in spring, which indicated its significant role to NO and $SO_{2}$ oxidation pathways.

Control Indian meal moth Plodia interpunctella by gas treatment

  • Han, Gyung Deok;Kwon, Hyeok;Jin, Hyun Jung;Kum, Ho Jung;Kim, Bo Hwan;Kim, Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.45-45
    • /
    • 2017
  • The Indian meal moth, Plodia interpunctella, is one of the most important pests of stored food in the food processing industry worldwide. To control the Indian meal moth, methyl bromide, phosphine, high carbon dioxide, sulfuryl fluoride and plant essential oil fumigation have been considered. However, these treatments have disadvantages. For example, depleting the ozone layer, showing resistance in insect, low control efficacy or need high cost for treatment. Chlorine dioxide ($ClO_2$) is strong disinfectant and insecticide. The gas caused a malfunction in enzymes. The oxidative stress induced by $ClO_2$ gas treatment damaged to a physiological system and all life stages of P. interpunctella. The gaseous $ClO_2$ is a convincing alternative to methyl bromide for controlling P. interpunctella. The gaseous $ClO_2$ was generated by a chlorine dioxide generator (PurgoFarm Co., Ltd., Hwasung, Korea). It generated highly pure $ClO_2$ gas and the gas blown out through a vent into a test chamber. Gas entry to the chamber was automatically controlled and monitored by a PortaSene II gas leak detector (Analytical Technology, Collegeville, PA, USA). The properly prepared eggs, larvae, pupae, and adults of P. interpunctella were used in this experiment. Data were analyzed using SAS 9.4. Percentage data were statistically analyzed after arcsine-root transformation. Analysis of variance was performed using general linear model, and means were separated by the least significant difference test at P < 0.05. Fumigation is an effective management technique for controlling all stages of P. interpunctella. We found that $ClO_2$ gas treatment directly effects on egg, larvae, pupae and adults of P. interpunctella. The gas treatment with proper concentration for over a day achieved 100 % mortality in all stages of P. interpunctella and short time treatment or low concentration gas treatment results showed that the egg hatchability, pupation rate, and adult emergency rate were lowered compare with untreated control. Also, abnormal pupae or adult rate were increased. Gaseous $ClO_2$ treatment induced insecticidal reactive oxygen species (ROS), and it resulted in fatal oxidative stress in P. interpunctella. Taken together, these results showed that exposure proper concentration and time of the gas control all stages of P. interpunctella by inducing fatal oxidative stress. Further studies will be required to apply the gas treatment under real-world condition and to understanding physiological reaction in P. interpunctella caused by oxidative stress.

  • PDF