Generation of Chemically Active Species in Hybrid Gas-Liquid Discharges

기체-액체 혼합 방전에 의한 화학적 활성종 생성 특성

  • Chung, Jae-Woo (Department of Environmental Engineering, Jinju National University) ;
  • Locke, Bruce R. (Department of Chemical Engineering, FAMU-FSU College of Engineering, Florida State University of Florida A&M University)
  • 정재우 (국립진주산업대학교 환경공학과) ;
  • Published : 2007.05.31

Abstract

We carried out a laboratory scale experiment about the characteristics of chemically active species produced in hybrid gas-liquid discharges. The electrode configuration which had high voltage electrode in the gas phase and ground electrode in the liquid was utilized while high voltage electrode has been typically positioned in the liquid in other studies. Our electrode was configured in such a way as to increase the energy efficiency of chemical reactions by creating a higher electrical field strength and a narrower pulse width than the typical electrode configuration. The highest ozone concentration was obtained at 45 kV which was the medium value in operating voltages. The decrease of solution conductivity increased the resistance of liquid phase and the electric field strength through the gas phase, so ozone gene-ration rate was enhanced. The increase of voltage promoted the production rate of hydrogen peroxide by increasing the electric field strength. In a lower voltage, the increase of solution conductivity increased the degradation rate of $H_2O_2$, so the $H_2O_2$ generation rate decreased. On the other hand, the effects of UV radiation, shock waves etc. increased the $H_2O_2$ generation rate as the solution conductivity increased. A higher rate of $H_2O_2$ generation can be achieved by mixing argon to oxygen which generates a stronger and more stable discharges.

고전압 방전극이 기체상에 위치하고 접지 전극이 수중에 설치된 기체-액체 혼합 방전에 의한 화학적 활성종의 발생 특성에 관해 실험실 규모 실험을 수행하였다. 실험된 전극 구조는 기존의 연구에서 사용해왔던 일반적 전극 배열에서보다 높은 전계 강도(electric field strength)를 형성하고 짧은 폭을 지닌 펄스들을 생성시킴으로써 방전에 의해서 일어나는 화학반응의 에너지 효율성을 높일 수 있는 것으로 나타났다. 방전에 의해 기체상에 생성되는 오존 농도는 실험된 전압 범위의 중간 값인 45 kV 조건에서 가장 높은 것으로 관찰되었다. 용액 전도도가 낮을수록 액체상을 통한 전기 저항이 증가하여 기체상에서 높은 전계 강도가 형성되므로 오존 생성을 촉진시키는 것으로 나타났다. 인가전압이 증가할수록 높은 전계 강도가 형성되어 강한 방전이 이루어지므로 과산화수소 생성속도가 증가하는 것으로 나타났다. 낮은 전압에서는 용액 전도도가 증가하면 과산화수소 분해속도가 증가하기 때문에 과산화수소 생성 속도가 감소하며 높은 전압에서는 용액 전도도가 증가하면 자외선 조사 등에 의해 과산화수소 발생의 중간 생성물인 OH 라디칼의 발생이 촉진되므로 과산화수소 생성 속도가 증가하는 것으로 나타났다. 산소와 아르곤의 혼합기체가 공급될 때, 강하고 안정한 방전이 이루어져 과산화수소 생성속도가 증가하는 것으로 나타났다.

Keywords

References

  1. Locke, B. R., Grymonpre, D. R., and Finney, W. C., 'Simultaneous gas-liquid pulsed corona discharge for organic compound degradation in water,' Proceedings of the 3rd International Symposium on Non-Thermal Plasma Technology for Pollution Control, pp. 30-33(2001)
  2. Ohshima, T., Sato, K, Terauchi, H, and Sato, Masayuki, 'Physical and chemical modifications of high-voltage pulse sterilization,' J. Electrostatics, 42, 159-166(1997) https://doi.org/10.1016/S0304-3886(97)00152-6
  3. Hoeben, W. F. L. M., Veldhuizen, E. M., Rutgers, W. R., Cramers, C. A. M. G., and Kroesen, G. M. W., 'The degradation of aqueous phenol solutions by pulsed positive corona discharges,' Plasma Sources Sci. Technol., 9, 361-369(2000) https://doi.org/10.1088/0963-0252/9/3/315
  4. Piskarev, M., 'Choice of conditions of an electrical discharge for generating chemically active particles for the decomposition of impurities in water,' Technical Physics, 44(1), 53-58(1999) https://doi.org/10.1134/1.1259251
  5. Leitner, N. K. V., Urashima, K., Bryden A., Ramot, H., Touchard, G., and Chang, J. S., 'Mechanism of VOC removal by pulsed arc electro hydraulic discharge sys-terns,' Proceedings of the 3rd International Symposium on Non-Thermal Plasma Technology for Pollution Control, 39-49(2001)
  6. Muhammad, A. M., Abdul, G., and Salman, A. M., 'Water purification by electrical discharges,' Plasma Sources Science and Technology, 10, 82-91(2001) https://doi.org/10.1088/0963-0252/10/1/311
  7. Clements, J. S., Sato, M., Davis, R. H., 'Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water,' IEEE Trans. Ind. Appl., IA-23, 224(1987)
  8. Sunka, P., Babicky, V., Clupek, M., Lukes, P., Simek, M., Schmidt, J., and Cernak, M., 'Generation of chemically active species by electrical discahrges in water,' Plasma Sources Sci. Technol., 8, 258-265(1999) https://doi.org/10.1088/0963-0252/8/2/006
  9. 이현돈, 신형재, 박상후, 이현주, 이수진, 정재우, 고경보, 조무현, '액체상 방전 공정에서 페놀 전환 특성에 미치는 운전변수의 영향,' 대한환경공학회 추계학술연구발표회논문집, pp. 105(2006)
  10. Lukes, P., Appleton, T., and Locke, B. R., 'Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors,' IEEE Trans. Ind. Appl., 40(1), 60-67(2004) https://doi.org/10.1109/TIA.2003.821799
  11. Chung, J. W., Cho, M. H., Son, B. H., Mok, Y. S., and Namkung, W., 'Study on reduction of energy consumption in pulsed corona discharge process for NOx removal,' Plasma Chemistry and Plasma Processing, 20(4), 495-509(2000) https://doi.org/10.1023/A:1007079822518
  12. Lukes, P., 'Water treatment by pulsed streamer corona discharge,' Ph. D. Thesis, Institute of Plasma Physics, Academy of Science of the Czech Republic(2001)
  13. Grymonpre, D. R., Sharma, A. K., Finney W. C., and Locke, B. R., 'The role of Fenton's reactions in aqueous phase pulsed streamer corona reactors,' Chem. Eng. J, 82, 189-207(2001) https://doi.org/10.1016/S1385-8947(00)00345-4
  14. Kogelschatz U., 'Ozone generation and dust collection,' Electrical discharges for environmental purposes, E. M. Van Veldhuizen(Eds), Nova Science Publishers, Inc., New York, pp. 315-344(1999)
  15. Joshi, A. A., Locke, B. R., Arce, P., and Finney, W. C., 'Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution,' J. Hazard. Mater., 41, 3-30(1995) https://doi.org/10.1016/0304-3894(94)00099-3
  16. Hoigne, J., 'Mechanisms, rates and selectivities of oxidations of organic compounds initiated by ozonation of water,' In Handbook of Ozone Technology and Applications(Rice, R. G. and Netzer, A. Eds), Ahn Arbor Science, Michigan, 341-379(1982)
  17. 전춘생, '방전 . 고전압 공학,' 동명사, 22-61(1980)
  18. Chung, J. W., Cho, M. H., and Namkung, W., 'Simulation study of corona discharges with flue gas conditions,' Proceedings of the 3rd International Symposium on Non-Thermal Plasma Technology for Pollution Control, 50-55(2001)