• Title/Summary/Keyword: Hybrid Gas-Liquid Discharges

Search Result 2, Processing Time 0.016 seconds

Generation of Chemically Active Species in Hybrid Gas-Liquid Discharges (기체-액체 혼합 방전에 의한 화학적 활성종 생성 특성)

  • Chung, Jae-Woo;Locke, Bruce R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.556-563
    • /
    • 2007
  • We carried out a laboratory scale experiment about the characteristics of chemically active species produced in hybrid gas-liquid discharges. The electrode configuration which had high voltage electrode in the gas phase and ground electrode in the liquid was utilized while high voltage electrode has been typically positioned in the liquid in other studies. Our electrode was configured in such a way as to increase the energy efficiency of chemical reactions by creating a higher electrical field strength and a narrower pulse width than the typical electrode configuration. The highest ozone concentration was obtained at 45 kV which was the medium value in operating voltages. The decrease of solution conductivity increased the resistance of liquid phase and the electric field strength through the gas phase, so ozone gene-ration rate was enhanced. The increase of voltage promoted the production rate of hydrogen peroxide by increasing the electric field strength. In a lower voltage, the increase of solution conductivity increased the degradation rate of $H_2O_2$, so the $H_2O_2$ generation rate decreased. On the other hand, the effects of UV radiation, shock waves etc. increased the $H_2O_2$ generation rate as the solution conductivity increased. A higher rate of $H_2O_2$ generation can be achieved by mixing argon to oxygen which generates a stronger and more stable discharges.

Optical emission analysis of hybrid air-water discharges

  • Pavel, Kostyuk;Park, J.Y.;Han, S.B.;Koh, H.S.;Gou, B.K.;Lee, H.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.521-522
    • /
    • 2006
  • In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen yield. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates, and point-to-plane electrode gap distance. The primary focus of this experiment was put on the optical emission of the near UV range, with the energy threshold sufficient for water dissociation and excitation. The $OH(A^{2+},'=0\;X^2,"=0$) band's optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. In the gaseous atmosphere saturated with water vapor the OH(A-X) band intensity was relatively high compared to the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. In the gaseous phase discharge phenomenon for Ar carrier gas transformed into a gliding arc via the flow rate growth. OH(A-X) band's intensity increased according to the flow rate or residence time of He feeding gas. Reciprocal tendency was acquired for $N_2$ and Ar carrier gases. The peak value of OH(A-X) intensity was observed in the proximity of the water surface, however in the cases of Ar and $N_2$ with 0.5 SLM flow rate peaks shifted to the region below the water surface. Rotational temperature ($T_{rot}$) was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which corresponds to the arc-like-streamer discharge.

  • PDF