• Title/Summary/Keyword: ozone cell

Search Result 76, Processing Time 0.022 seconds

Vascular Cell Responses against Oxidative Stress and its Application

  • Ryoo, Sung-Woo;Lee, Sang-Ki;Kim, Cuk-Seong;Jeon, Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The history of studies in biology regarding reactive oxygen species (ROS) is approximately 40 years. During the initial 30 years, it appeared that these studies were mainly focused on the toxicity of ROS. However, recent studies have identified another action regarding oxidative signaling, other than toxicity of ROS. Basically, it is suggested that ROS are reactive, and degenerate to biomolecules such as DNA and proteins, leading to deterioration of cellular functions as an oxidative stress. On the other hand, recent studies have shown that ROS act as oxidative signaling in cells, resulting in various gene expressions. Recently ROS emerged as critical signaling molecules in cardiovascular research. Several studies over the past decade have shown that physiological effects of vasoactive factors are mediated by these reactive species and, conversely, that altered redox mechanisms are implicated in the occurrence of metabolic and cardiovascular diseases ROS is a collective term often used by scientist to include not only the oxygen radicals($O2^{-{\cdot}},\;{^{\cdot}}OH$), but also some non-radical derivatives of oxygen. These include hydrogen peroxide, hypochlorous acid (HOCl) and ozone (O3). The superoxide anion ($O2^{-{\cdot}}$) is formed by the univalent reduction of triplet-state molecular oxygen ($^3O_2$). Superoxide dismutase (SOD)s convert superoxide enzymically into hydrogen peroxide. In biological tissues superoxide can also be converted nonenzymically into the nonradical species hydrogen peroxide and singlet oxygen ($^1O_2$). In the presence of reduced transition metals (e.g., ferrous or cuprous ions), hydrogen peroxide can be converted into the highly reactive hydroxyl radical (${^{\cdot}}OH$). Alternatively, hydrogen peroxide may be converted into water by the enzymes catalase or glutathione peroxidase. In the glutathione peroxidase reaction glutathione is oxidized to glutathione disulfide, which can be converted back to glutathione by glutathione reductase in an NADPH-consuming process.

  • PDF

Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells (UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화)

  • Sujin Cho;Jae-Keun Hwang;Dowon Pyun;Seok Hyun Jeong;Solhee Lee;Wonkyu Lee;Ji-Seong Hwang;Youngho Choe;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

Growth Inhibition against Contaminants in Aseptic Chocolate Milk Using Physicochemical Methods (물리.화학적 처리에 의한 멸균 초콜릿 우유 오염균의 생육억제 효과)

  • Choi, Moon-Kyoung;Yoon, So-Young;Lee, So-Young;Kim, Koth-Bong-Woo-Ri;Lee, Chung-Jo;Jung, Ji-Yeon;Kwak, Ji-Hee;Kim, Min-Ji;Kim, Dong-Hyun;SunWoo, Chan;Lee, Ju-Woon;Byun, Myung-Woo;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1157-1163
    • /
    • 2011
  • This study was conducted to investigate the cause of microbiological contaminants in aseptic chocolate milk and evaluate the effect of a physicochemical treatment on the growth inhibition of isolated bacterial strains. The bacterium isolated from aseptic chocolate milk was identified as Bacillus lentus and was named B. lentus M1. In the heat and pH treatment, the growth of B. lentus was inhibited at 110$^{\circ}C$ for >15 min and at pH's <5 and >10. An electrolyzed water treatment against B. lentus M1, revealed 5 mm growth past the inhibition zone. The effect of ozone gas on B. lentus M1 growth was evaluated using viable cell counts. When the initial number of B. lentus M1 was $10^2$ and $10^3$ CFU, the bacteria were completely suppressed by ozone gas treatment for 10 and 30 min, respectively. In a microwave treatment, B. lentus M1 was sterilized following microwave treatment for 1 min. As the result of ${\gamma}$-irradiation against B. lentus M1, numbers decreased as the ${\gamma}$-irradiation dosage increased. These results show the growth inhibition effects against contaminants in aseptic chocolate milk using physicochemical treatments.

Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli (비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과)

  • Kim, Keyyoung;Paik, Namwon;Kim, Yonghee;Yoo, Kwanho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.

Effect of Physicochemical Treatment on Growth Inhibition of Hanseniaspora uvarum Y1 from Yogurt (물리·화학적 처리에 의한 요구르트 오염균의 생육 억제효과)

  • SunWoo, Chan;Lee, So-Young;Yoon, So-Young;Jung, Ji-Yeon;Kim, Koth-Bong-Woo-Ri;Lee, Chung-Jo;Kwak, Ji-Hee;Kim, Min-Ji;Kim, Dong-Hyun;Jung, Seul-A;Kim, Hyun-Jee;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1781-1786
    • /
    • 2011
  • This study was conducted to investigate the cause of microbiological contamination in yogurt and evaluate the effect of physicochemical treatment on the growth inhibition of Hanseniaspora uvarum isolated from yogurt. The yeast strain Hanseniaspora uvarum Y1 was subjected to heat and pH treatments. H. uvarum Y1 was killed at $70^{\circ}C$ and $80^{\circ}C$ after 15 min and survived in a wide pH range from pH 2 to 9. However, it did not survive under pH 1 and over pH 10. In a disk diffusion susceptibility test on H. uvarum Y1, a clear zone (5 mm) of growth inhibition was observed upon treatment with electrolyzed water. The effect of ozone gas on the growth of H. uvarum Y1 was evaluated by viable cell count. Initial cell numbers of $10^2$ and $10^3$ CFU/mL of H. uvarum Y1 were completely killed by treatment for 10 and 30 min, respectively. H. uvarum Y1 was also sterilized by microwave treatment for 1 min. When treated with gamma-irradiation, the rate of killing of H. uvarum Y1 was proportional to the irradiation dose. and complete killing occurred at a dose of 50 kGy.

A Therapeutic Effect of Ozonated Oil on Bovine Mastitis (젖소 유방염에 대한 Ozonated oil의 치료효과)

  • Jo Sung-Nam;Liu Jianzhu;Lee Sang-Eun;Hong Min-Sung;Kim Duck-Hwan;Kim Myung-Cheol;Cho Sung-Whan;Jun Moo-Hyung
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.318-321
    • /
    • 2005
  • Forty- nine quarters from 24 lactating cows with chronic mastitis were selected. The cows were raised on dairy farms in Gongju, Jochiwon and Yeongi in Chungnam province, and Iksan in Jeonbuk province, Korea. The 49 quarters with bovine mastitis were divided into control (7 quarters) and experimental (42 quarters) groups. The experimental quarters were assigned to experimental group A (10 quarters, somatic cell count: $50-100\times10^4/ml)$, experimental group B (14 quarters, somatic cells count: $100-300{\times}10^4/ml)$, and experimental group C (18 quarters, somatic cells count: $>300\times10^4/ml$), according to the number of the somatic cells in their milk. The quarters of control group were treated with norfloxacin ointment (10 g/tube) based on the result of sensitivity, twice a day for 3 days. The quarters or experimental groups were infused 10ml or ozonated oils twice a day for 3 days. After treatment, the milk of the control group contained non-significantly lower numbers of somatic cells and bacteria on day 7, compared with pretreatment levels. Experimental groups A, B and C had lower somatic and bacterial cells in their milk on day 7, compared with pretreatment levels. Experimental group B and C had significantly lower numbers of somatic cells in their milk ell day 7 than before treatment (p<0.01). However, no significant difference in somatic cell numbers was detected between the control alld experimental groups. It was concluded that ozone therapy with ozonated oil applied on bovine mastitis might be effective.