Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2023R1A2C1007128 & No. 2022M3J7A1066428).
References
- Sha, W. E. I., Ren, X., Chen, L., Choy, W. C. H., The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106 (22) (2015). DOI: 10.1063/1.4922150 (acccessed 11/27/2023).
- Best Research-Cell Efficiency Chart (accepted: 2023.08). https://www.nrel.gov/pv/cell-efficiency.html. (accessed)
- Wang, Z., Fang, J., Mi, Y., Zhu, X., Ren, H., Liu, X., Yan, Y., Enhanced performance of perovskite solar cells by ultravioletozone treatment of mesoporous TiO2. Applied Surface Science, 436, 596-602 (2018). DOI: https://doi.org/10.1016/j.apsusc.2017.12.085.
- Huang, L., Hu, Z., Xu, J., Sun, X., Du, Y., Ni, J., Cai, H., Li, J., Zhang, J., Efficient planar perovskite solar cells without a high temperature processed titanium dioxide electron transport layer. Solar Energy Materials and Solar Cells, 149, 1-8 (2016). DOI: https://doi.org/10.1016/j.solmat.2015.12.033.
- Klasen, A., Baumli, P., Sheng, Q., Johannes, E., Bretschneider, S. A., Hermes, I. M., Bergmann, V. W., Gort, C., Axt, A., Weber, S. A. L., et al., Removal of Surface Oxygen Vacancies Increases Conductance Through TiO2 Thin Films for Perovskite Solar Cells. The Journal of Physical Chemistry C, 123 (22), 13458-13466 (2019). DOI: 10.1021/acs.jpcc.9b02371.
- Mendez, P. F., Muhammed, S. K. M., Barea, E. M., Masi, S., Mora-Sero, I., Analysis of the UV-Ozone-Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis. Solar RRL, 3 (9), 1900191 (2019). DOI: https://doi.org/10.1002/solr.201900191.
- Ma, F., Zhao, Y., Li, J., Zhang, X., Gu, H., You, J., Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 52, 393-411 (2021). DOI: https://doi.org/10.1016/j.jechem.2020.04.027.
- Pathak, M., Mutadak, P., Mane, P., More, M. A., Chakraborty, B., Late, D. J., Rout, C. S., Enrichment of the field emission properties of NiCo2O4 nanostructures by UV/ozone treatment. Materials Advances, 2 (8), 2658-2666 (2021), 10.1039/D1MA00032B. DOI: 10.1039/D1MA00032B.
- Islam, R., Chen, G., Ramesh, P., Suh, J., Fuchigami, N., Lee, D., Littau, K. A., Weiner, K., Collins, R. T., Saraswat, K. C., Investigation of the Changes in Electronic Properties of Nickel Oxide (NiOx) Due to UV/Ozone Treatment. ACS Applied Materials & Interfaces, 9 (20), 17201-17207 (2017). DOI: 10.1021/acsami.7b01629.
- Kitao, M., Izawa, K., Urabe, K., Komatsu, T., Kuwano, S., Yamada, S., Preparation and Electrochromic Properties of RF-Sputtered NiOx Films Prepared in Ar/O2/H2 Atmosphere. Japanese Journal of Applied Physics, 33 (12R), 6656 (1994). DOI: 10.1143/JJAP.33.6656.
- Boyd, C. C., Shallcross, R. C., Moot, T., Kerner, R., Bertoluzzi, L., Onno, A., Kavadiya, S., Chosy, C., Wolf, E. J., Werner, J., et al., Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 4(8), 1759-1775 (2020). DOI: https://doi.org/10.1016/j.joule.2020.06.004.
- Ratcliff, E. L., Meyer, J., Steirer, K. X., Garcia, A., Berry, J. J., Ginley, D. S., Olson, D. C., Kahn, A., Armstrong, N. R., Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chemistry of Materials, 23 (22), 4988-5000 (2011). DOI: 10.1021/cm202296p.