DOI QR코드

DOI QR Code

Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells

UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화

  • Sujin Cho (Department of Materials Science and Engineering, Korea University) ;
  • Jae-Keun Hwang (Department of Materials Science and Engineering, Korea University) ;
  • Dowon Pyun (Department of Materials Science and Engineering, Korea University) ;
  • Seok Hyun Jeong (Department of Materials Science and Engineering, Korea University) ;
  • Solhee Lee (Department of Materials Science and Engineering, Korea University) ;
  • Wonkyu Lee (Department of Materials Science and Engineering, Korea University) ;
  • Ji-Seong Hwang (Department of Materials Science and Engineering, Korea University) ;
  • Youngho Choe (Institute for Energy Technology, Korea University) ;
  • Donghwan Kim (Department of Materials Science and Engineering, Korea University)
  • 조수진 (신소재공학과, 고려대학교) ;
  • 황재근 (신소재공학과, 고려대학교) ;
  • 편도원 (신소재공학과, 고려대학교) ;
  • 정석현 (신소재공학과, 고려대학교) ;
  • 이솔희 (신소재공학과, 고려대학교) ;
  • 이원규 (신소재공학과, 고려대학교) ;
  • 황지성 (신소재공학과, 고려대학교) ;
  • 최영호 (에너지기술공동연구소, 고려대학교) ;
  • 김동환 (신소재공학과, 고려대학교)
  • Received : 2023.11.30
  • Accepted : 2024.01.09
  • Published : 2024.03.31

Abstract

Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2023R1A2C1007128 & No. 2022M3J7A1066428).

References

  1. Sha, W. E. I., Ren, X., Chen, L., Choy, W. C. H., The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106 (22) (2015). DOI: 10.1063/1.4922150 (acccessed 11/27/2023).
  2. Best Research-Cell Efficiency Chart (accepted: 2023.08). https://www.nrel.gov/pv/cell-efficiency.html. (accessed)
  3. Wang, Z., Fang, J., Mi, Y., Zhu, X., Ren, H., Liu, X., Yan, Y., Enhanced performance of perovskite solar cells by ultravioletozone treatment of mesoporous TiO2. Applied Surface Science, 436, 596-602 (2018). DOI: https://doi.org/10.1016/j.apsusc.2017.12.085.
  4. Huang, L., Hu, Z., Xu, J., Sun, X., Du, Y., Ni, J., Cai, H., Li, J., Zhang, J., Efficient planar perovskite solar cells without a high temperature processed titanium dioxide electron transport layer. Solar Energy Materials and Solar Cells, 149, 1-8 (2016). DOI: https://doi.org/10.1016/j.solmat.2015.12.033.
  5. Klasen, A., Baumli, P., Sheng, Q., Johannes, E., Bretschneider, S. A., Hermes, I. M., Bergmann, V. W., Gort, C., Axt, A., Weber, S. A. L., et al., Removal of Surface Oxygen Vacancies Increases Conductance Through TiO2 Thin Films for Perovskite Solar Cells. The Journal of Physical Chemistry C, 123 (22), 13458-13466 (2019). DOI: 10.1021/acs.jpcc.9b02371.
  6. Mendez, P. F., Muhammed, S. K. M., Barea, E. M., Masi, S., Mora-Sero, I., Analysis of the UV-Ozone-Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis. Solar RRL, 3 (9), 1900191 (2019). DOI: https://doi.org/10.1002/solr.201900191.
  7. Ma, F., Zhao, Y., Li, J., Zhang, X., Gu, H., You, J., Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 52, 393-411 (2021). DOI: https://doi.org/10.1016/j.jechem.2020.04.027.
  8. Pathak, M., Mutadak, P., Mane, P., More, M. A., Chakraborty, B., Late, D. J., Rout, C. S., Enrichment of the field emission properties of NiCo2O4 nanostructures by UV/ozone treatment. Materials Advances, 2 (8), 2658-2666 (2021), 10.1039/D1MA00032B. DOI: 10.1039/D1MA00032B.
  9. Islam, R., Chen, G., Ramesh, P., Suh, J., Fuchigami, N., Lee, D., Littau, K. A., Weiner, K., Collins, R. T., Saraswat, K. C., Investigation of the Changes in Electronic Properties of Nickel Oxide (NiOx) Due to UV/Ozone Treatment. ACS Applied Materials & Interfaces, 9 (20), 17201-17207 (2017). DOI: 10.1021/acsami.7b01629.
  10. Kitao, M., Izawa, K., Urabe, K., Komatsu, T., Kuwano, S., Yamada, S., Preparation and Electrochromic Properties of RF-Sputtered NiOx Films Prepared in Ar/O2/H2 Atmosphere. Japanese Journal of Applied Physics, 33 (12R), 6656 (1994). DOI: 10.1143/JJAP.33.6656.
  11. Boyd, C. C., Shallcross, R. C., Moot, T., Kerner, R., Bertoluzzi, L., Onno, A., Kavadiya, S., Chosy, C., Wolf, E. J., Werner, J., et al., Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 4(8), 1759-1775 (2020). DOI: https://doi.org/10.1016/j.joule.2020.06.004.
  12. Ratcliff, E. L., Meyer, J., Steirer, K. X., Garcia, A., Berry, J. J., Ginley, D. S., Olson, D. C., Kahn, A., Armstrong, N. R., Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chemistry of Materials, 23 (22), 4988-5000 (2011). DOI: 10.1021/cm202296p.