• Title/Summary/Keyword: oxygenase

Search Result 483, Processing Time 0.035 seconds

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.

PROSTAGLANDINS AND THE REGULATION OF TUMOUR CELL GROWTH

  • Bailey, David-Bishop;Jane A. Mitchell
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • Increased expression of inducible cyclo-oxygenase (COX-2) is associated with a wide variety of tumours. In addition inhibitors of COX have shown a great deal of promise in vitro and in animal models as potential anti-tumour therapies. COX enzymes utilise the substrate arachidonic acid to produce prostaglandin (PO)H$_2$, the precursor to all the prostanoids.(omitted)

  • PDF

Substrate Specificity of Human Flavin-containing monooxygenase 1 for Thiocarbamides

  • Jung, Ki-Hwa;D. M. Ziegler;Kim, Young-Mi
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2001.05a
    • /
    • pp.124-124
    • /
    • 2001
  • Microsomes isolated from Spodoptera frugiperda (Sf)9 cells infected wi th human FM01 recombinant baculovirus catalyzed the NADPH- and 02-dependent oxidation of methimazole, thiourea, and phenylthiourea. However there was no detectable activity with 1,3-diphenylthiourea or larger thiocarbamides. Microsomes from control Sf9 cells were devoid of methimazole or thiourea S-oxygenase activity. (omitted)

  • PDF

Association of a Common Reductase with Multiple Aromatic Terminal Dioxygenases in Sphingomonas yanoikuyae Strain B1

  • Mihyun Bae;Kim, Eungbin
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.40-43
    • /
    • 2000
  • The aromatic dioxygenase system in Sphingomonas yanoikuyae strain Bl consists of three components, an oxygenase, a ferredoxin, and a reductase. The insertional knockout of the bphA4 gene encoding a reductase and subsequent complementation experiments showed that the reductase encoded by bphA4 in S. yanoikuyae strain Bl is associated with multiple dioxygenase components including that of toluate dioxygenase (XyIXY).

  • PDF

BIOACTIVATION OF DIBROMOETHANE BY CONJUGATION WITH GLUTAHIONE

  • Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1991
  • The pesticide and carcinogen ethylene dibromide(EDB) is metabolized both by cytosolic GSH S-transferase and by microsomal mixed function oxygenase. Cytochrome P-450 IIE1 appears to be major enzyme to metabolize EDB.EDB is activated to a mutagen by enzymatic conjugation with glutathione (GSH). Such activation is an exception to the general mode of detoxification via GSH S-transferase action. The primary DNA adduct (>95) is S-[2-(N7-guanyl)ethyl] GSH and a minor adduct is S-[2-(N7-guanyl)ethyl]cysteine, which is excreted in the urine and may serve as a biomarker of damage.

  • PDF

Induction of Heme Oxygenase-1 By 15-Deoxy-Delta12,14-Prostaglandin J2 Is Mediated Through Activation of Transcription Factor Nrf2 in Mcf-7 Cells

  • Kim, Eun-Hee;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.180-180
    • /
    • 2003
  • Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is involved in the suppression of growth of several types of tumors such as liposarcoma, cancers of breast, prostate, and colon, possibly through induction of cell cycle arrest and/or apoptosis.(omitted)

  • PDF

$MPP^{+}-induced$ cytotoxicity is attenuated by induction of heme oxygenase

  • Park, Ha-Young;Lee, Seung-Jin;Yang, Sang-In;Jang, Choon-Gon;Lee, Seok-Yong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.267.2-267.2
    • /
    • 2002
  • MPP$\^$+/ is known to be a neurotoxic substance that induces the degeneration of dopaminergic neurons and a Parkinsonism-like syndrome. MPP$\^$+/ is retained intracellularly or accumulated in dopaminergic neurons via the dopamine-reuptake system. It inhibits mitochondrial electron transport in dopaminergic neurons. In addition. it generates hydroxyl radicals. which cause the peroxidation of membrane lipid or damage DNA. (omitted)

  • PDF