• Title/Summary/Keyword: oxygenase

Search Result 483, Processing Time 0.032 seconds

Anti-oxidant and Anti-inflammatory Potentials of Sasa quelpaertensis Leaf Residue Extracts (제주조릿대 잎 잔사 추출물의 항산화 및 항염 활성)

  • Lee, Ju-Yeop;Song, Hana;Ko, Hee-Chul;Jang, Mi-Gyeong;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.738-744
    • /
    • 2018
  • Sasa quelpaertensis Nakai is a native Korean plant that grows only on Mt. Halla of Jeju Island. Its leaf is used for a popular bamboo tea due to its various health-promoting properties, and it has been increasingly used as food and cosmetic ingredients. To utilize the S. quelpaertensis leaf efficiently, the preparation method for phytochemical-rich extract (PRE) using the leaf's residue was previously reported, which was produced after hot water extraction. This study was undertaken to evaluate the anti-oxidant and anti-inflammatory potential of PRE and its solvent fractions. The ethyl acetate fraction of PRE (EPRE) showed higher DPPH, ABTS, and superoxide radical scavenging activities, and it effectively inhibited intracellular reactive oxygen species (ROS) and nitric oxide (NO) production in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. EPRE also induced the expression of heme oxygenase-1 (HO-1) by increasing the level of nuclear factor E2-related factor 2 (Nrf2) in a nuclear fraction. The inhibiting effect of EPRE on LPS-induced NO production was partially reversed by the HO-1 inhibitor (zinc protoporphyrin, ZPP), suggesting that HO-1 is involved in suppressing NO production. Taken together, the results suggest that EPRE has potential as a promising anti- oxidant and anti-inflammatory agent.

Up-regulation of Heme Oxygenase-1 Expression by cAMP-elevating Agents in RAW 264.7 cells

  • Ko, Young-Shin;Park, Min-Kyu;Kang, Young-Jin;Lee, Young-Soo;Seo, Han-Geuk;Lee, Duck-Hyung;Yunchoi, Hye-Sook;Chong, Won-Seog;Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 2002
  • Heme oxygenase-1 (HO-1) is the inducible from of the rate-limiting enzyme of heme degradation; it regulates the cellular contents of heme. HO-1 is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against oxidative stress in mammalian cells. To investigate the role of the cAMP-dependent protein kinase A (PKA) signaling pathway on nitrogen oxidative stress-induced HO-1 gene expression, RAW 264.7 cell cultures were treated with sodium nitroprusside (SNP). SNP increased the expression of HO-1 mRNA and protein, time- and concentration-dependently. Treatment with H89, PKA inhibitor, but not LY83583, guanylate cyclase inhibitor, significantly diminished the HO-1 expression by SNP, indicating that cAMP plays a crucial role in the induction of HO-1. Incubation with cAMP-elevating agents, such as forskolin or isoproterenol resulted in up-regulation of the expression of HO-1. Forskolin-induced expression of HO-1 was inhibited by H89. Furthermore, propranolol, $\beta$-adrenoceptor blocker, inhibited the isoproterenol-induced HO-1 expression, supporting the importance of cAMP in the induction of HO-1 expression. Higenamine-S, but not higenamineR, enhanced the HO-1 expression induced by SNP. Furthermore, cellular toxicity induced by hydrogen peroxide was attenuated by the presence of SNP, which was further increased by the presence of ZnPPIX, HO-1 inhibitor. Collectively, these results strongly suggest that up-regulation of HO-1 expression in RAW 264.7 cells involves PKA signal pathway.

Induction of Heme Oxygenase-1 by Traditional Herb Mix Extract Improves MKN-74 Cell Survival and Reduces Stomach Bleeding in Rats by Ethanol and Aspirin in vivo

  • Kang, Young-Jin;Moon, Hyung-Suk;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.65-70
    • /
    • 2007
  • Chinese herb medicines have traditionally been used to treat or alleviate the symptom of various diseases. The rationale for use of certain herbs to certain disorder is now getting unveiled by modern technology. In the present study, we investigated whether herb mix extract(HMX), which is alleged to be useful for gastric ulcer, protects stomach from oxidative stress. Rats were allowed to normal diet with and without HMX (1, 5, 10 mg/kg) for 30 days. To induce gastric ulcer, ethanol (75%, 1.5 ml) or acidified aspirin (100 mg/kg in 0.2 N HCl) was administered by oral route in 24 h-fasted rats and examined the gastric ulceration(bleeding) by measuring the size 1 h after the treatment. Results indicated the area of gastric bleeding was significantly less in HMX fed rats than in normal diet fed ones, and it was dependent on the duration and amount of HMX. To investigate the underlying mechanism by which HMX protects stomach from oxidative stress, expression of enzymes like heme oxygenase (HO), cyclooxygenase (COX), and inducible nitric oxide (iNOS) were investigated in MKN-74 cells, where aspirin or H. pylori was introduced. The results were compared with RAW 264.7 cells to check if there's cell specificities exist. The expression of HO-1 but not COX-2, iNOS was significantly increased by HMX. Furthermore, HO-1 inhibitor, SnPP IX reduced the HO-1 activity and reversed the survival rate in HMX-treated MKN-74 cells. There's no difference between RAW 264.7 cells and MKN-74 cells. We, thus, concluded that HMX is beneficial for protection from oxidative injury, and induction of HO-1 by HMX in gastric cells is, at least, responsible for protection from oxidative stress such as ethanol, aspirin and possibly H. pylori infection.

Identification of Differentially Expressed Genes in Improved Rainbow Trout Growth by Treatment with a Fish Myostatin Prodomain Using the Annealing Control Primer System (Annealing control primer system을 이용한 어류 재조합 myostatin prodomain 단백질에 의해 성장이 증가된 무지개송어의 특이적 발현 유전자 탐색)

  • Lee, Sang-Beum;Jin, Hyung-Joo
    • Korean Journal of Ichthyology
    • /
    • v.24 no.2
    • /
    • pp.118-124
    • /
    • 2012
  • The present study was conducted to investigate different gene expression profile between treated poMSTNpro and non-treated in rainbow trout and to identify those genes that are specifically or predominantly expressed in treated poMSTNpro by employing annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR). We isolated total RNAs in muscle tissues from the treated poMSTNpro fish by immersion bath technique with fish myostatin prodomain (Paralichthys olivaceus, poMSTNpro) for one month and the other was non-treated poMSTNpro, and synthesized cDNA using annealing control primers (ACP, Seegene, Korea). Using 20 different ACPs for PCR, were cloned sequenced, and analyzed identities of 2 differentially expressed genes (DEGs). According to BLAST analysis, sequences of 2 clones significantly matched database entries and confirmed by semi-quantitative RT-PCR. The functional roles of one up-regulated gene, cytochrome P450 mono-oxygenases 2K1v2 (CYP2K1v2), and one down-regulated gene was Profilin-1 were identified. We identified distinctive gene expression profiles in improved rainbow trout growth by treatment with a fish myostatin prodomain using ACP-based GeneFishing.

Alaria esculenta Extract Protects against Oxidative Damage by Inducing Heme Oxygenase-1 Expression via Akt and Nrf2

  • Choi, Chun-Yeon;Jo, Guk-Heui;Lee, Jung-Im;Seo, Young-Wan;Han, Tae-Jun;Choi, Il-Whan;Liu, Kwang-Hyeon;Oh, Sang-Taek;Kim, Dong-Eun;Jang, Won-Hee;Seog, Dae-Hyun;Park, Yeong-Hong;Yea, Sung-Su
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.120-125
    • /
    • 2009
  • Alaria esculenta is a brown seaweed found in the Arctic. This study investigated the protective effect of A. esculenta extract (AEE) against oxidant-mediated injury and its mode of action in RAW264.7 macrophages. The methyl thiazolyl tetrazolium (MTT) assay showed that $H_2O_2$ treatment reduced cell viability, whereas AEE protected cells from $H_2O_2$-mediated cytotoxicity in a dose-dependent manner. Because heme oxygenase-1 (HO-1) is known to protect cells against oxidative damage, we investigated the effect of AEE on HO-1 gene expression and HO enzyme activity. The protective effect of AEE against $H_2O_2$-induced injury was correlated with increased HO enzyme activity. AEE also induced HO-1 mRNA and protein expression, as determined RT-PCR and Western blotting, respectively. To characterize the mechanisms by which AEE induces HO-1 gene expression, we examined the effect of AEE on the nuclear translocation of NF-E2-related factor-2 (Nrf2) and Akt phosphorylation. AEE treatment activated upstream signaling for HO-1 gene expression, including the nuclear translocation of Nrf2 and Akt phosphorylation. Collectively, these results suggest that AEE has anti-oxidant activity that is mediated, at least in part, via the activation of Nrf2 and Akt and the subsequent induction of HO-1 gene expression.

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells (생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과)

  • Park, Chung Mu
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.

Involvement of Peroxynitrite in NO Donor-Induced HO-1 Expression in Rat Articular Chondrocytes (흰쥐 관절연골세포에서 NO donor에 의해 유도된 HO-1 발현에서 peroxynitrite의 관련성 연구)

  • Song, Ju-Dong;Kim, Kang-Mi;Kim, Jong-Min;Yoo, Young-Hyun;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 2011
  • Nitric oxide (NO) donors are a potent inducer of heme oxygenase-1 (HO-1). However, it is unclear whether or not HO-1 expression induced by NO donors is a direct consequence of NO released by NO donors. Here, we investigated the effects of NO donors on the expression of HO-1 in primary rat articular chondrocytes. NO donors (SIN-1, SNAP, and SNP) significantly induced the accumulation of HO-1 protein accompanied by an increase in HO-1 mRNA. NO donor-induced HO-1 expression exerted cytoprotection against NO and/or superoxide-induced cell death. Guanylate cyclase signaling was not associated with Nrf2 and HO-1 expression in NO donor-treated chondrocytes. Interestingly, NO scavenger carboxy-PTIO and SOD mimetic TEMPOL markedly inhibited NO donor-induced HO-1 expression in chondrocytes. In addition, NO donor-induced HO-1 expression was completely abrogated by the peroxynitrite scavenger MnTBAP. Since peroxynitrite can be physiologcally formed in the cell through reaction of NO with superoxide, we analyzed whether or not peroxynitrite could directly induce HO-1 expression in chondrocytes. Peroxynitrite treatment in chondrocytes evoked doseand time-dependent Nrf2 and HO-1 expression. These results indicate that HO-1 expression induced by NO donors in rat articular chondrocytes is due to NO-mediated peroxynitrite rather than NO.

Comparative Analysis of Aniline Dioxygenase Genes from Aniline Degrading Bacteria, Burkholderia sp. HY1 and Delftia sp. HY99. (Aniline 분해균주 Burkholderia sp. HY1과 Delftia sp. HY99에서 유래된 Aniline Dioxygenases 유전자의 비교 분석)

  • Kahng, Hyung-Yeel;Oh, Kye-Heon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.104-111
    • /
    • 2007
  • In this study, aniline dioxygenase genes responsible for initial catabolism of aniline in Burkholderia sp. HY1 and Delftia sp. HY99 were cloned and the amino acid sequences were comparatively analyzed, which already have been reported as bacteria utilizing aniline as a sole source of carbon and nitrogen, B. sp. HY1 was found to have at least a plasmid, and the plasmld-cured strain, B. sp. HY1-PC obtained using mitomycin C was tested with wild type strain to investigate whether the former maintained the degradability for aniline. This proved that the aniline oxygenase gene from B. sp. HY1 was located in chromosomal DNA, not in plasmid DNA. Aniline dioxygenase small subunits from B. sp. HY1 and D. sp. HY99 were found, based on 146 amino acids, to share 79% similarity. Notably, ado2 genes from B. sp. HY1 and D. sp. HY99 which were found to be terminal dioxygenase of aniline dioxygenase small subunit showed 99% similarity in the deduced amino acid sequences with tdnA2 of Frateuria sp. ANA-18 and danA2 of D. sp. AN3, respectively. Besides, enzyme assay and amino acid sequence analysis of catechol dioxygenase supported the previous report that B. sp. HY1 might occupy ortho-cleavage pathway using catechol 1,2-dioxygenase, while D. sp. HY99 might occupy catechol 2,3-dioxygenase for meta-cleavage pathway.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.