DOI QR코드

DOI QR Code

Involvement of Peroxynitrite in NO Donor-Induced HO-1 Expression in Rat Articular Chondrocytes

흰쥐 관절연골세포에서 NO donor에 의해 유도된 HO-1 발현에서 peroxynitrite의 관련성 연구

  • Song, Ju-Dong (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Kim, Kang-Mi (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Kim, Jong-Min (Department of Anatomy and Cell Biology, Dong-A University College of Medicine) ;
  • Yoo, Young-Hyun (Department of Anatomy and Cell Biology, Dong-A University College of Medicine) ;
  • Park, Young-Chul (Department of Microbiology and Immunology, Pusan National University School of Medicine)
  • 송주동 (부산대학교 의학전문대학원 미생물학 및 면역학교실) ;
  • 김강미 (부산대학교 의학전문대학원 미생물학 및 면역학교실) ;
  • 김종민 (동아대학교 의과대학 해부학교실) ;
  • 유영현 (동아대학교 의과대학 해부학교실) ;
  • 박영철 (부산대학교 의학전문대학원 미생물학 및 면역학교실)
  • Received : 2011.01.13
  • Accepted : 2011.02.23
  • Published : 2011.04.30

Abstract

Nitric oxide (NO) donors are a potent inducer of heme oxygenase-1 (HO-1). However, it is unclear whether or not HO-1 expression induced by NO donors is a direct consequence of NO released by NO donors. Here, we investigated the effects of NO donors on the expression of HO-1 in primary rat articular chondrocytes. NO donors (SIN-1, SNAP, and SNP) significantly induced the accumulation of HO-1 protein accompanied by an increase in HO-1 mRNA. NO donor-induced HO-1 expression exerted cytoprotection against NO and/or superoxide-induced cell death. Guanylate cyclase signaling was not associated with Nrf2 and HO-1 expression in NO donor-treated chondrocytes. Interestingly, NO scavenger carboxy-PTIO and SOD mimetic TEMPOL markedly inhibited NO donor-induced HO-1 expression in chondrocytes. In addition, NO donor-induced HO-1 expression was completely abrogated by the peroxynitrite scavenger MnTBAP. Since peroxynitrite can be physiologcally formed in the cell through reaction of NO with superoxide, we analyzed whether or not peroxynitrite could directly induce HO-1 expression in chondrocytes. Peroxynitrite treatment in chondrocytes evoked doseand time-dependent Nrf2 and HO-1 expression. These results indicate that HO-1 expression induced by NO donors in rat articular chondrocytes is due to NO-mediated peroxynitrite rather than NO.

Nitric oxide (NO) donors는 heme oxygenase-1 (HO-1)의 강력한 유도제이다. 그러나 NO donors에 의한 HO-1의 발현이 NO donor에 의해 방출되는 NO에 의한 직접적인 영향인지는 불분명하다. 본 연구에서 흰쥐의 무릎으로부터 분리 배양한 관절연골세포에서 HO-1의 발현에 NO donors의 영향을 조사하였다. NO donors (SIN-1, SNAP 그리고 SNP)는 HO-1의 mRNA와 단백질의 합성을 크게 증가시켰다. 그리고 NO의 표적 분자인 guanylate cyclase와 protein kinase G의 관련성을 살펴본 결과, NO donors에 의한 Nrf2와 HO-1의 발현증가와는 무관한 것으로 보였다. 흥미롭게도, NO scavenger인 carboxy-PTIO와 SOD mimetic TEMPOL은 NO donors에 의한 HO-1의 발현을 억제하였다. 게다가, peroxynitrite scavenger인 MnTBAP에 의해서도 Nrf2와 HO-1의 발현이 완전히 억제되었다. Peroxynitrite는 NO와 superoxide의 반응에 의해 세포 내에서 자연적으로 형성되는 물질이므로 peroxynitrite가 관절연골세포에서 HO-1의 발현에 직접적인 영향을 주는지를 관찰하였다. 관절연골세포에 peroxynitrite를 처리한 결과, 시간과 농도 의존적으로 Nrf2와 HO-1의 발현을 크게 증가시켰다. 본 실험 자료 는 NO donors에 의한 HO-1의 발현증가는 방출되는 NO의 직접적인 영향이라기 보다는 NO와 superoxide의 반응으로 형성되는 peroxynitrite에 의해 유도된다는 것을 시사한다.

Keywords

References

  1. Alam, J. and J. L. Cook. 2003. Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr. Pharm. Des. 9, 2499-2511. https://doi.org/10.2174/1381612033453730
  2. Bouton, C. and B. Demple. 2000. Nitric oxide-inducible expression of heme oxygenase-1 in human cells: translation-independent stabilization of the mRNA and evidence for direct action of nitric oxide. J. Biol. Chem. 275, 32688-32693. https://doi.org/10.1074/jbc.275.42.32688
  3. Denninger, J. W. and M. A. Marletta. 1999. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim. Biophys. Acta 1411, 334-350. https://doi.org/10.1016/S0005-2728(99)00024-9
  4. Durante, W., M. H. Kroll, N. Christodoulides, K. J. Peyton, and A. I. Schafer. 1997. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ. Res. 80, 557-564. https://doi.org/10.1161/01.RES.80.4.557
  5. Foresti, R., P. Sarathchandra, J. E. Clark, C. J. Green, and R. Motterlini. 1999. Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochem. J. 339, 729-736. https://doi.org/10.1042/0264-6021:3390729
  6. Hara, E., K. Takahashi, K. Takeda, M. Nakayama, M. Yoshizawa, H. Fujita, K. Shirato, and S. Shibahara. 1999. Induction of heme oxygenase-1 as a response in sensing the signals evoked by distinct nitric oxide donors. Biochem. Pharmacol. 58, 227-236. https://doi.org/10.1016/S0006-2952(99)00097-0
  7. Hartsfield, C. L., J. Alam, J. L. Cook, and A. M. Choi. 1997. Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am. J. Physiol. 273, L980-988.
  8. Jackson, R. M., G. Parish, and E. S. Helton. 1998. Peroxynitrite modulates MnSOD gene expression in lung epithelial cells. Free Radic. Biol. Med. 25, 463-472. https://doi.org/10.1016/S0891-5849(98)00101-4
  9. Kang, K. W., S. H. Choi, and S. G. Kim. 2002. Peroxynitrite activates NF-E2-related factor 2/antioxidant response element through the pathway of phosphatidylinositol 3-kinase: the role of nitric oxide synthase in rat glutathione S-transferase A2 induction. Nitric Oxide 7, 244-253. https://doi.org/10.1016/S1089-8603(02)00117-9
  10. Kim, H. J., I. Tsoy, M. K. Park, Y. S. Lee, J. H. Lee, H. G. Seo, and K. C. Chang. 2006. Iron released by sodium nitroprusside contributes to heme oxygenase-1 induction via the cAMP-protein kinase A-mitogen-activated protein kinase pathway in RAW 264.7 cells. Mol. Pharmacol. 69, 1633-1640. https://doi.org/10.1124/mol.105.020487
  11. Kurozumi, R., M. Takahashi, and S. Kojima. 2005. Involvement of mitochondrial peroxynitrite in nitric oxide-induced glutathione synthesis. Biol. Pharm. Bull. 28, 779-785. https://doi.org/10.1248/bpb.28.779
  12. Lee, S. W., Y. S. Song, S. H. Shin, K. T. Kim, Y. C. Park, B. S. Park, I. Yun, K. Kim, S. Y. Lee, W. T. Chung, H. J. Lee, and Y. H. Yoo. 2008. Cilostazol protects rat chondrocytes against nitric oxide-induced apoptosis in vitro and prevents cartilage destruction in a rat model of osteoarthritis. Arthritis Rheum. 58, 790-800. https://doi.org/10.1002/art.23220
  13. Li, M. H., Y. N. Cha, and Y. J. Surh. 2006. Peroxynitrite induces HO-1 expression via PI3K/Akt-dependent activation of NF-E2-related factor 2 in PC12 cells. Free Radic. Biol. Med. 41, 1079-1091. https://doi.org/10.1016/j.freeradbiomed.2006.06.010
  14. Mcmillan, K., D. S. Brendt, D. J. Hirsch, S. H. Synder, J. E. Clark, and B. S. Masters. 1992. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds CO. Proc. Natl. Acad. Sci. USA 89, 11141-11145. https://doi.org/10.1073/pnas.89.23.11141
  15. Naughton, P., R. Foresti, S. K. Bains, M. Hoque, C. J. Green, and R. Motterlini. 2002. Induction of heme oxygenase 1 by nitrosative stress. J. Biol. Chem. 277, 40666-40674. https://doi.org/10.1074/jbc.M203863200
  16. Niknahad, H. and P. J. O'Brien. 1996. Involvement of nitric oxide in nitroprusside-induced hepatocyte cytotoxicity. Biochem. Pharmacol. 51, 1031-1039. https://doi.org/10.1016/0006-2952(96)85086-6
  17. Otterbein, L. E., F. H. Bach, J. Alam, M. Soares, M., Tao Lu.H., Wysk, M., R. J. Davis, R. A. Flavell, and A. M. Choi. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422-428. https://doi.org/10.1038/74680
  18. Pi, J., Y. Bai, J. M. Reece, J. Williams, D. Liu, M. L. Freeman, W. E. Fahl, D. Shugar, J. Liu, W. Qu, S. Collins, and M. P. Waalkes. 2007. Molecular mechanism of human Nrf2 activation and degradation: Role of sequential phosphorylation by protein kinase CK2. Free Radic. Biol. Med. 42, 1797-1806. https://doi.org/10.1016/j.freeradbiomed.2007.03.001
  19. Poderoso, J. J., M. C. Carreras, C. Lisdero, N. Riobo, F. Schopfer, and A. Boveris. 1996. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biphys. 328, 85-92. https://doi.org/10.1006/abbi.1996.0146
  20. Polte, T., A. Abate, P. A. Dennery, and H. Schroder. 2000. Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler. Thromb. Vasc. Biol. 20, 1209-1215. https://doi.org/10.1161/01.ATV.20.5.1209
  21. Stone, J. R., R. H. Sands, W. R. Dunham, and M. A. Marletta. 1995. Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase. Biochem. Biophys. Res. Commun. 207, 572-577. https://doi.org/10.1006/bbrc.1995.1226
  22. Szabo, C., H. Ischiropoulos, and R. Radi. 2007. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662-680. https://doi.org/10.1038/nrd2222
  23. Taskiran, D., M. Stefanovic-Racic, H. I. Georgescu, and C. H. Evans. 1994. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem. Biophys. Res. Commun. 200, 142-148. https://doi.org/10.1006/bbrc.1994.1426
  24. Trackey, J. L., T. F. Uliasz, and S. J. Hewett. 2001. SIN-1-induced cytotoxicity in mixed cortical cell culture: Peroxynitrite-dependent and-independent induction of excitotoxic cell death. J. Neurochem. 79, 445-455.
  25. Vuolteenaho, K., T. Moilanen, R. G. Knowles, and E. Moilanen. 2007. The role of nitric oxide in osteoarthritis. Scand. J. Rheumatol. 36, 247-258. https://doi.org/10.1080/03009740701483014
  26. Wahl, S. M., N. Cartney-Francis, J. Chan, R. Dionne, L. Ta, and J. M. Qrenstein. 2003. Nitric oxide in experimental joint inflammation. Benefit or detriment? Cells Tissues Organs 174, 26-33. https://doi.org/10.1159/000070572
  27. Weiss, G., G. Werner-Felmayer, E. R. Werner, K. Grunewald, H. Wachter, and M. W. Hentze. 1994. Iron regulates NO synthase activity by controlling nuclear transcription. J. Exp. Med. 180, 969-976. https://doi.org/10.1084/jem.180.3.969
  28. Yu, R., C. Chen, Y. Y. Mo, V. Hebbar, E. D. Owuor, T. H. Tan, and A. N. Kong. 2000. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 275, 39907-39913. https://doi.org/10.1074/jbc.M004037200
  29. Zhang, D. D. and M. Hannink. 2003. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell Biol. 23, 8137-8151. https://doi.org/10.1128/MCB.23.22.8137-8151.2003
  30. Zhu, H., K. Itoh, M. Yamamoto, J. L. Zweier, and Y. Li. 2005. Role of Nrf2 signaling in regulation of antioxidants and phase2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett. 579, 3029-3036. https://doi.org/10.1016/j.febslet.2005.04.058

Cited by

  1. Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway vol.47, pp.2, 2014, https://doi.org/10.5483/BMBRep.2014.47.2.088