• Title/Summary/Keyword: oxygen production

Search Result 1,955, Processing Time 0.035 seconds

용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향 (The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense)

  • 유재수;전계택;정용섭
    • KSBB Journal
    • /
    • 제18권2호
    • /
    • pp.155-160
    • /
    • 2003
  • Streptoverticillium morbaraene로부터 미생물 유래 transglutaminase 생산을 위하여 최적의 용존산소 농도를 구명하였다. 용존산소는 용존산소 농도 자동 조절 시스템에 의해 조절되었다. 발효 중 용존산소 농도 조절을 위하여 통기속도는 0.3-3.9 L/min, 교반속도는 260-360 rpm으로 각각 범위를 설정하였다. 용존산소 농도를 조절한 다양한 회분식 배양에서 용존산소가 20%일 때 최대 미생물유래 transgiutaminase 생산이 가능하였다. 최분배양에서 용존산소 농도를 20%로 조절한 경우 미생물유래 transglutaminase 생산은 2.12 U/mL이었고, 용존산소를 조절하지 않은 회분식 배양의 미생물유래 transglutaminase 생산보다 1.1배 향상되었다. 역시 가장 높은 미생물유래 transglutaminase 생산은 용존산소를 20%로 조절한 유가식 배양에서 가능하였으며, 용존산소를 조절하지 않은 회분식 배양의 미생물유래 transglutaminase 생산에 비교해서 1.3배 증가하였다. 최대 건조균체량과 미생물유래 transglutaminase 생산은 각각 13.2 g/L와 2.6 U/mL이었다. 용존산소를 20%로 용존산소 농도 자동 조절 시스템에 의해 조절한 유가식 배양은 미생물유래 transgiutaminase 생산에 적절하였으며 다른 미생물 배양에도 적용할 수 있을 것으로 판단된다.

A Theoretical Consideration on Oxygen Production Rate in Microalgal Cultures

  • Kim, Nag-Jong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권5호
    • /
    • pp.352-358
    • /
    • 2001
  • Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate should be estimated. Based on a simple model of light penetration depth and algal photosynthesis, the oxygen production rate in high-density microalgal cultures could be calculated. The estimated values and profiles of oxygen production rate by this model were found to be in accordance with the experimental data. Optimal parameters for PBR operations were also calculated using the model.

  • PDF

The effect of the dissolved oxygen concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium

  • 최수형;구만복
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.171-174
    • /
    • 2000
  • 본 연구는 용존산소의 양에 따른 MnP의 생산양상을 체계적으로 연구하였으며, 과량의 산소 공급 시 MnP 생산이 저해될 수 있음을 산소공급에 따른 과량의 $H_2O_2$생산 측면에서 설명하고 있다. 또한 보다 높은 MnP 생산을 위한 산소공급방법을 제시하고자 하였다.

  • PDF

Effect of Limited Oxygen Supply on Coenzyme $Q_{10}$ Production and Its Relation to Limited Electron Transfer and Oxidative Stress in Rhizobium radiobacter T6102

  • Seo, Myung-Ji;Kim, Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.346-349
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$) production from Rhizobium radiobacter T6102 was monitored under various oxygen supply conditions by controlling the agitation speeds, aeration rates, and dissolved oxygen levels. As the results, the $CoQ_{10}$ production was enhanced by limited oxygen supply. To investigate whether the $CoQ_{10}$ production is associated with its physiological functions of electron carrier and antioxidant, the effects of sodium azide and hydrogen peroxide on the $CoQ_{10}$ production were studied, showing that the $CoQ_{10}$ contents were slightly enhanced with increasing sodium azide (up to 0.4 mM) and hydrogen peroxide (up to $10\;{\mu}M$) concentrations. These results suggest the plausible mechanism where the limited electron transfer stimulating the environments of limited oxygen supply and oxidative stress could accumulate the $CoQ_{10}$, providing the relationship between the $CoQ_{10}$ physiological functions and its regulation system.

Effects of Selected Environmental Conditions on Biomass and Geosmin Production by Streptomyces halstedii

  • Schrader, Kevin K.;Blevins, Willard T.
    • Journal of Microbiology
    • /
    • 제37권3호
    • /
    • pp.159-167
    • /
    • 1999
  • The effects of bicarbonate concentration, atmospheric carbon dioxide level, and reduced atmospheric oxygen on biomass and geosmin production and geosmin/biomass (G/B) values for Streptomyces halstedii, a producer of the off-flavor compound geosmin, were determined. In addition, a study was performed to determined possible synergistic relationships between a cyanobacterium, Oscillatoria tenuis UTEX #1566, and S. halstedii in the enhancement of actinomycete growth and/or geosmin production. These studies took into consideration those conditions that can occur during cyanobacterial bloom die-offs. Increasing bicarbonate concentration caused slight decreases in geosmin production and G/B for S. halstedii. Increasing atmospheric oxygen promoted geosmin production and G/B while lower oxygen levels resulted in a decrease in geosmin production and G/B by S. halstedii. Biomass production by S. halstedii was adversely affected by reduced oxygen levels while changes in bicarbonate concentration and atmospheric carbon dioxdie levels had little effect on biomass production. Sonicated cells of O. tenuis UTEX #1566 promoted biomass production by S. halstedii, and O. tenuis culture (cells and extracellular metabolites) and culture supernatnat (extracellular metabolites) each promoted geosmin and G/B yields for S. halstedii. In certain aquatic systems, environmental conditions resulting from cyanobacterial blooms and subsequent bloom die-offs could favor actinomycete growth and off-flavor compound by certain actinomycetes.

  • PDF

청아환(靑娥丸)에 의한 활성(活性) 산소류(酸素類)의 소거(消去) 작용(作用)과 항산화(抗酸化) 효소계(酵素系)의 활성(活性) 증가(增加) 효과(效果)에 대(對)한 연구(硏究) (Increased antioxidant enzyme activities and scavenging effects of oxygen free radicals by Cheongahwan)

  • 정지천
    • 대한한의학회지
    • /
    • 제18권2호
    • /
    • pp.355-365
    • /
    • 1997
  • This study was undertaken to examine the effect of Cheongahwan(CAH), being known to reinforce Kidney-yang, on the activities of endogenous antioxidant enzymes and the production of oxygen free radicals in the kidney tissues. Alterations in enzyme activities were observed after in vivo treatment in rats. CAH caused a significant increase in the activities of superoxide dismutase (SOD), glutathione peroxidase and glutathione S-transferase. But catalase activity was not significantly altered by CAH. Treatment in vitro of CAH decreased the production of oxygen free radicals in a dose-dependent fashion. These results suggest that CAH stimulate the activities of antioxidant enzymes and inhibit directly the production of oxygen free radicals. These effects of CAH may contribute to prevent the oxygen free radical-induced impairment of cell function.

  • PDF

Effects of Nitrogen and Oxygen Supply on Production of $Poly-{\beta}-Hydroxybutyrate$ in Azotobacter chroococcum

  • Lee, In-Young;Stegantseva, Ellen-M.;Savenkova, Ludmila;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.100-104
    • /
    • 1995
  • Production of $poly-{\beta}-hydroxybutyrate$ (PHB) in a strain of Azotobacter chroococcum, a nitrogen-fixing bacteria, was investigated at various levels of nitrogen and oxygen. Feeding nitrogen source increased both cell growth and PHB accumulation. Oxygen supply appeared to be one of the most important operating parameters for PHB production. Both cell growth and PHB accumulation increased with the sufficient supply of air in the fed-batch fermentation of the strain. However, it was also noted that keeping the oxygen level under limited condition was critical to achieve high PHB productivity. A high titer of PHB (52 g/l) with a high cellular content (60%) was obtained after 48 hr of fed-batch operation by controlling the oxygen supply. Dual limitation of nitrogen and oxygen did not further increase the PHB accumulation probably due to the greater demand for reducing power and ATP for nitrogen fixation.

  • PDF

산소전달 속도와 용존산소가 Azotobacter vinelandii UWD의 생분해성 고분자(PHBV) 생산에 미치는 영향 (Effect of Oxygen Transfer Rate and Dissolved Oxygen on the Production of PHBV by Azoto-bacter vinelandii UWD.)

  • 박창호
    • 한국미생물·생명공학회지
    • /
    • 제26권6호
    • /
    • pp.529-536
    • /
    • 1998
  • 용존산소(D.O.) level은 유기산 및 포도당을 혼합한 배지에서 Azotobacter vinelandii UWD의 생장 및 생분해성 고분자(PHBV) 생성에 큰 영향을 주었다. 용존산소 level이 높은 경우(5% D.O.)는 낮은 경우(1% D.O.)에 비해 세포의 생장속도가 약 2배 증가하였으나 PHBV 생성은 D.O.가 낮은 경우 62.3 wt%로 D.O.가 높은 경우에 비해 약 17배 증가하였다. 그러나 B.O. level은 통기(aeration)에 의한 A. vinefandii UWD의 발효특성 연구에 적합한 기준이 아니었다. 공기공급속도를 고정하고 교반속도만을 변화시키는 통기법으로 산소전달속도를 감소시켰을 때 이 균주는 산소소모속도를 그에 따라 대응 감소시킴으써 겉보기 D.O.를 높게(5%) 유지할 수 있었고 이 때 생장이 느려지고 PHBV 양은 57.3 wt%로 증가하였다. 통기가 세포생장 및 PHBV 생성에 미치는 영향을 일관성 있게 설명할 수 있는 기준은 D.O. level이 아니라 산소전달속도였으며 비생장속도는 산소전달속도에 비례하여 증가하였고 PHBV 생산량은 산소전달속도에 반비례하였다.

  • PDF

Regulation of Metabolic Flux in Lactobacillus casei for Lactic Acid Production by Overexpressed ldhL Gene with Two-Stage Oxygen Supply Strategy

  • Ge, Xiang-Yang;Xu, Yan;Chen, Xiang;Zhang, Long-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.81-88
    • /
    • 2015
  • This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains.

대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구 (Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method)

  • 이유리;정재학
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.