DOI QR코드

DOI QR Code

Effect of Limited Oxygen Supply on Coenzyme $Q_{10}$ Production and Its Relation to Limited Electron Transfer and Oxidative Stress in Rhizobium radiobacter T6102

  • Seo, Myung-Ji (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI)) ;
  • Kim, Soon-Ok (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI))
  • Published : 2010.02.28

Abstract

Coenzyme $Q_{10}$ ($CoQ_{10}$) production from Rhizobium radiobacter T6102 was monitored under various oxygen supply conditions by controlling the agitation speeds, aeration rates, and dissolved oxygen levels. As the results, the $CoQ_{10}$ production was enhanced by limited oxygen supply. To investigate whether the $CoQ_{10}$ production is associated with its physiological functions of electron carrier and antioxidant, the effects of sodium azide and hydrogen peroxide on the $CoQ_{10}$ production were studied, showing that the $CoQ_{10}$ contents were slightly enhanced with increasing sodium azide (up to 0.4 mM) and hydrogen peroxide (up to $10\;{\mu}M$) concentrations. These results suggest the plausible mechanism where the limited electron transfer stimulating the environments of limited oxygen supply and oxidative stress could accumulate the $CoQ_{10}$, providing the relationship between the $CoQ_{10}$ physiological functions and its regulation system.

Keywords

References

  1. Berndt, J. D., N. L. Callaway, and F. Gonzalez-Lima. 2001. Effects of chronic sodium azide on brain and muscle cytochrome oxidase activity: A potential model to investigate environmental contributions to neurodegenerative diseases. J. Toxicol. Environ. Health A 63: 67-77. https://doi.org/10.1080/152873901750128380
  2. Britta, S. and K. P. Robert. 2000. Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 146: 787-796.
  3. Choi, G.-S., Y.-S. Kim, J.-H. Seo, and Y.-W. Ryu. 2005. Restricted electron flux increases coenzyme $Q_{10} $ production in Agrobacterium tumefaciens ATCC4452. Process Biochem. 40: 3225-3229. https://doi.org/10.1016/j.procbio.2005.03.038
  4. Cluis, C. P., A. M. Burja, and V. J. J. Martin. 2007. Current prospects for the production of coenzyme $Q_{10} $ in microbes. Trends Biotechnol. 25: 514-521. https://doi.org/10.1016/j.tibtech.2007.08.008
  5. Do, T. Q., J. R. Schultz, and C. Clarke. 1996. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 93: 7534-7539. https://doi.org/10.1073/pnas.93.15.7534
  6. Gu, S.-B., J.-M. Yao, Q.-P. Yuan, P.-J. Xue, Z.-M. Zheng, L. Wang, and Z.-L. Yu. 2006. A novel approach for improving the productivity of ubiquinone-10 producing strain by low-energy ion beam irradiation. Appl. Microbiol. Biotechnol. 72: 456-461. https://doi.org/10.1007/s00253-005-0283-4
  7. Ha, S.-J., S.-Y. Kim, J.-H. Seo, D.-K. Oh, and J.-K. Lee. 2007. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 74: 974-980. https://doi.org/10.1007/s00253-006-0744-4
  8. Ha, S.-J., S.-Y. Kim, J.-H. Seo, M. Jeya, Y.-W. Zhang, T. Ramu, I.-W. Kim, and J.-K. Lee. 2009. $Ca^{2+} $ increases the specific coenzyme $Q_{10} $ content in Agrobacterium tumefaciens. Bioprocess Biosyst. Eng. 32: 697-700. https://doi.org/10.1007/s00449-009-0318-9
  9. Kalen, A., B. Norling, E. L. Appelkvist, and G. Dallner. 1987. Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochem. Biophys. Acta 926: 70-78. https://doi.org/10.1016/0304-4165(87)90183-8
  10. Kawamukai, M. 2002. Biosynthesis, bioproduction, and novel roles of ubiquinone. J. Biosci. Bioeng. 94: 511-517.
  11. Lorence, R. M., K. Carter, G. N. Green, and R. B. Gennis. 1987. Cytochrome $b_{558}$ monitors the steady state redox state of the ubiquinone pool in the aerobic respiratory chain of Escherichia coli. J. Biol. Chem. 262: 10532-10536.
  12. Okada, K., T. Kainou, K. Tanaka, T. Nakagawa, H. Matsuda, and M. Kawamukai. 1998. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. Eur. J. Biochem. 255: 52-59. https://doi.org/10.1046/j.1432-1327.1998.2550052.x
  13. Petr, K., K. Igor, and D. Vladimir. 1993. Effect of oxygen on ubiquinone-10 production by Paracoccus denitrificans. Biotechnol. Lett. 15: 1001-1002. https://doi.org/10.1007/BF00129925
  14. Seo, M.-J., E.-M. Im, J.-H. Hur, J.-Y. Nam, C.-G. Hyun, Y.-R. Pyun, and S.-O. Kim. 2006. Production of coenzyme $Q_{10}$ by recombinant E. coli harboring the decaprenyl diphosphate synthase gene from Sinorhizobium meliloti. J. Microbiol. Biotechnol. 16: 933-938.
  15. Seo, M.-J., E.-M. Im, J.-Y. Nam, and S.-O. Kim. 2007. Increase of Co$Q_{10}$ production level by the coexpression of decaprenyl diphosphate synthase and 1-deoxy-D-xylulose 5-phosphate synthase isolated from Rhizobium radiobacter ATCC 4718 in recombinant Escherichia coli. J. Microbiol. Biotechnol. 17: 1045-1048.
  16. Stocker, R., V. W. Bowry, and B. Frei. 1991. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does $\alpha$-tocopherol. Proc. Natl. Acad. Sci. U.S.A. 88: 1646-1650. https://doi.org/10.1073/pnas.88.5.1646
  17. Tomasetti, M., G. P. Littarru, R. Stocker, and R. Alleva. 1999. Coenzyme $Q_{10}$0 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radic. Biol. Med. 27: 1027-1032. https://doi.org/10.1016/S0891-5849(99)00132-X
  18. Wu, Z., G. Du, and J. Chen. 2003. Effects of dissolved oxygen concentration and DO-stat feeding strategy on Co$Q_{10}$ production with Rhizobium radiobacter. World J. Microbiol. Biotechnol. 19: 925-928.
  19. Yoshida, H., Y. Kotani, K. Ochiai, and K. Araki. 1998. Production of ubiquinone-10 using bacteria. J. Gen. Appl. Microbiol. 44: 19-26. https://doi.org/10.2323/jgam.44.19

Cited by

  1. Coenzyme $Q_{10}$ Production by Sphingomonas sp. ZUTE03 with Novel Precursors Isolated from Tobacco Waste in a Two-Phase Conversion System vol.21, pp.5, 2010, https://doi.org/10.4014/jmb.1012.12017
  2. Association of Colony Morphology with Coenzyme $Q_{10}$ Production and Its Enhancement from Rhizobium radiobacter T6102W by Addition of Isopentenyl Alcohol as a Precursor vol.22, pp.2, 2010, https://doi.org/10.4014/jmb.1107.07028