• Title/Summary/Keyword: oxygen barrier

Search Result 326, Processing Time 0.024 seconds

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects

  • Muhammad Saeed;Zoya Afzal;Fatima Afzal;Rifat Ullah Khan;Shaaban S. Elnesr;Mahmoud Alagawany;Huayou Chen
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1111-1127
    • /
    • 2023
  • Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Quality and Shelf-Life of Vacuum Packed RTE (Ready-To-Eat) Hamburg Steak Depending on the Oxygen Permeability of Packaging Material and the Storage Temperature (포장재의 산소투과도와 저장온도에 따른 즉석섭취형 햄버그스테이크의 품질 및 저장성)

  • Lim, Ji Hoon;Lee, Sung Ki;Chung, Seung Hee;Lee, Keun Taik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.95-102
    • /
    • 2016
  • This study investigated the effects of the oxygen permeability of vacuum packaging film and the storage temperature on the quality and shelf life of Hamburg steaks during storage for 14 days. Control samples (C) were packaged in a polyamide/polyethylene (PA/PE) film and stored at $5^{\circ}C$. Treatment samples were either packaged in an ethylene vinyl alcohol/polyethylene (EVOH/PE) copolymer film and stored at $5^{\circ}C$ (T1), and in a PA/PE film and stored at $-18^{\circ}C$ (T2). The initial total plate count (TPC) was 3.6 log cfu/g. In T1 samples, TPC and Brochothrix thermosphacta counts were increased, similar to those in C samples, whereas Pseudomonas spp. counts were significantly lower than those in C samples during storage. Over the storage period, the volatile basic nitrogen values increased most rapidly in C samples, followed by T1 and then T2 samples. The values of thiobarbituric acid reactive substances steadily increased in all samples during storage. The colour parameters were not significantly different among the samples during storage. T1 samples maintained sensory qualities in flavour and off-odour parameters for two days longer than C samples did. At day 12, T2 samples were evaluated as being below the marketability score of 5.0 for texture. In conclusion, using high oxygen barrier films like EVOH/PE copolymer for packaging Hamburg steaks could extend the sensory qualities in view of flavour and off-odour during chilled storage. However, frozen storage at $-18^{\circ}C$ is recommended when the storage period is extended beyond 14 days at $5^{\circ}C$.

Carboxyhemoglobin Dissociation at the Various Partial Pressures of Oxygen -Comparison between Adult and Fetal Bloods- (산소분압(酸素分壓)에 따른 Carboxyhemoglobin의 해리양상(解離樣相) -성인혈(成人血)과 태아혈(胎兒血)의 비교(比較)-)

  • Park, Byung-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.15 no.1
    • /
    • pp.145-151
    • /
    • 1982
  • Breslau's report on the two stillbirths induced by illuminating gas poisoning made many investigators explore the hazards. of carbon monoxide(CO) poisoning to pregnancy. The pregnant woman, her fetus, and the newborn infant have been identified to be particularly vulnerable to CO even in low concentration. Several factors, such as placental barrier, membrane resistance of maternal and fetal red blood cells etc., were considered to be related to the delayed elimination of CO from fetus. Slower elimination of CO from fetus than from mother was confirmed in several in vivo studies. But there are few studies which have confirmed the difference of carboxyhemoglobin (HbCO) dissociation in adult and fetal bloods. Author investigated the effects of hemoglobin itself on the elimination of CO from mother and fetus. By observing the difference of CO dissociation from adult and fetal hemoglobin at the various partial pressures of oxygen, the author tries to suggest the base of the proper treatment measure for the CO poisoning of pregnant woman and newborn infant. The results were as follows: 1. The total hemoglobin amounts of adults and fetal bloods were $16.1{\pm}0.50gm%\;and\;15.7{\pm}0.32gm%$, respectively. The fetal hemoglobin proportions in adult and fetal bloods were $1.2{\pm}0.15%\;and\;72.7{\pm}3.01%$, respectively. 2. Adult and fetal bloods saturated by CO to 100% HbCO were exposed to ambient air$(21%\;O_2),\;100%\;O_2\;and\;3\;ATAO_2$. After 30 minutes exposure, the HbCO saturations of adult blood were 96.7%, 70.9%, and 52.8%, respectively, and those of fetal blood were 98.5%, 76.1%, and 62.2%, respectively. HbCO dissociation was proportional to the partial pressure of oxygen and the most marked dissociation was shown under 3 ATA $O_2$, HbCO dissociation of fetal blood was slower than that of adult blood in all conditions. According to the above results, it is possible that CO poisoning make more serious damage to the fetus and newborn infant than to the adult due to the delayed dissociation of HbCO. Thus in the treatment of CO poisoning of pregnant woman and newborn infant, hyperbaric oxygen therapy seems to be the most eflective treatment measure, but the duration of hyperbaric oxygenation should be lengthened accordingly.

  • PDF

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Sintering and Electrical Properties According to Sb/Bi Ratio(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.682-688
    • /
    • 2012
  • In this study we aimed to examine the co-doping effects of 1/6 mol% $Co_3O_4$ and 1/4 mol% $Cr_2O_3$ (Co:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Co,Cr-doped ZBS, ZBS(CoCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were formed in all systems. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 by Cr rather than Co. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(CoCr), the varistor characteristics were improved (non-linear coefficient, ${\alpha}$ = 20~63), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to be composed of an electrically single barrier (0.94~1.1 eV) that is, however, somewhat sensitive to ambient oxygen with temperature. The phase development, densification, and microstructure were controlled by Cr rather than by Co but the electrical and grain boundary properties were controlled by Co rather than by Cr.

Clostridium difficile Toxin A Inhibits Wnt Signaling Pathway in Gut Epithelial Cells (대장상피세포 속 Wnt 신호 경로에 대한 C. difficile 톡신A의 영향)

  • Yoon, I Na;Kim, Ho
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1016-1021
    • /
    • 2018
  • Clostridium difficile toxin A causes pseudomembranous colitis. The pathogenesis of toxin A-induced colonic inflammation includes toxin A-dependent epithelial cell apoptosis, resulting in the loss of barrier function provided by epithelial cells against luminal pathogens. Toxin A-dependent epithelial cell apoptosis has been linked to toxin A-induced production of reaction oxygen species and subsequent p38MAPK activation; $p21^{CIP1/WAF1}$ upregulation-dependent cell cycle arrest; cytoskeletal disaggregation; and/or the induction of Fas ligand on epithelial cells. However, the molecular mechanisms underlying toxin A-induced apoptosis remain poorly understood. This study tested whether toxin A could block the Wnt signaling pathway, which is involved in gut epithelial cell proliferation, differentiation and antiapoptotic progression. Toxin A treatment of nontransformed human colonocytes (NCM460) rapidly reduced ${\beta}$-catenin protein, an essential component of the Wnt signaling pathway. Exposure of mouse ileum to toxin A also significantly reduced ${\beta}$-catenin protein levels. MG132 inhibition of proteasome-dependent protein degradation resulted in the recovery of toxin A-mediated reduction of ${\beta}$-catenin, indicating that toxin A may activate intracellular processes, such as $GSK3{\beta}$, to promote degradation of ${\beta}$-catenin. Immunoblot analysis showed that toxin A increased active phosphorylation of $GSK3{\beta}$. Because the Wnt signaling pathway is essential for gut epithelial cell proliferation and anti-apoptotic processes, our results suggest that toxin A-mediated inhibition of the Wnt signaling pathway may be required for maximal toxin A-induced apoptosis of gut epithelial cells.

The Effects of Environmental Conditions on the Reduction Rate of TNT by $Fe^0$ (환경요인이 $Fe^0$에 의한 TNT의 환원 반응속도에 미치는 영향)

  • 배범한
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2000
  • The effects of environmental conditions, initial dissolved oxygen concentrations, pH, and the presence of electron carrier vitamin $B_{12}$, on the reduction rate of Tn by $Fe^0$ was quantitatively analyzed using a batch reactor In all experiments, TNT reduction was best described with a first order reaction and the reduction rate decreased with the increase in the initial DO concentration. However, the specific reaction rate did not decrease linearly with the increase in the initial DO concentration. In the presence of HEPES buffer 0.2 and 2.0 mM(pH 5.7$\pm$0.2), the specific reaction rate increased more than 5.8 times, which showed reduction rate is rather significantly influenced by the pH of the solution. To test the possibility of reaction rate enhancement, well-known electron carrier(or mediator) , vitamin $B_{12}$, has augmented besides $Fe^0$. In the presence of 8.0 $mu\textrm{g}$/L of vitamin $B_{12}$, the specific reaction rate increased as much as 14.6 times. The results indicate that the addition of trace amount of vitamin $B_{12}$ can be a promising rate controlling option for the removal of organics using a $Fe^0$ filled permeable reactive barrier.

  • PDF

Enhanced Transduction of Cu,Zn-Superoxide Dismutase with HIV-1 Tat Protein Transduction Domains at Both Termini

  • Eum, Won Sik;Jang, Sang Ho;Kim, Dae Won;Choi, Hee Soon;Choi, Soo Hyun;Kim, So Young;An, Jae Jin;Lee, Sun Hwa;Han, Kyuhyung;Kang, Jung Hoon;Kang, Tae-Cheon;Won, Moo Ho;Cho, Yong Joon;Choi, Jin Hi;Kim, Tae Yoon;Park, Jinseu;Choi, Soo Young
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD) is responsible for highly efficient protein transduction across plasma membranes. In a previous study, we showed that Tat-Cu,Zn-superoxide dismutase (Tat-SOD) can be directly transduced into mammalian cells across the lipid membrane barrier. In this study, we fused the human SOD gene with a Tat PTD transduction vector at its N- and/or C-terminus. The fusion proteins (Tat-SOD, SOD-Tat, Tat-SOD-Tat) were purified from Escherichia coli and their ability to enter cells in vitro and in vivo compared by Western blotting and immunohistochemistry. The transduction efficiencies and biological activities of the SOD fusion protein with the Tat PTD at either terminus were equivalent and lower than the fusion protein with the Tat PTD at both termini. The availability of a more efficient SOD fusion protein provides a powerful vehicle for therapy in human diseases related to this anti-oxidant enzyme and to reactive oxygen species.