• Title/Summary/Keyword: oxygen and hydrogen isotopic compositions

Search Result 28, Processing Time 0.029 seconds

Evaluation of Seawater Intrusion on Costal Groundwater using Systematic Analytical Method (계층적 분석방법을 이용한 해수침투 영향 평가)

  • Kim, Chang-Hoon;Kim, Nam-Ju;Park, Youngyun
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Seawater intrusion was evaluated using electrical conductivity, chemical proxies, and oxygen isotopic compositions in coastal area. It seems that groundwater in the area where the electrical conductivity is over $3,000{\mu}S/cm$ is influenced by seawater. However, it is very difficult that seawater intrusion is distinguished from other contaminants using the electrical conductivity. The chemical proxies and oxygen and hydrogen isotopic compositions can quantitatively estimate seawater intrusion. However, these method is a costly disadvantage. Therefore, firstly, groundwater contamination by seawater intrusion was evaluated using electrical conductivity and then the additional chemical and isotopic analysis were conducted in areas where possibility of contamination by seawater intrusion is high. These systematic analytical method can reduce analytical cost to quantitatively evaluate influence of seawater intrusion on coastal groundwater and may improve efficiency of analytical method for seawater intrusion.

A High-resolution Study of Isotopic Compositions of Precipitation (고해상도 강우동위원소변동에 대한 연구)

  • Lee, Jeonghoon;Kim, Songyi;Han, Yeongcheol;Na, Un-Sung;Oh, Yoon Seok;Kim, Young-Hee;Kim, Hyerin;Ham, Ji-Young;Choi, Hye-Bin;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.371-377
    • /
    • 2015
  • Isotopic compositions of precipitation have been used to understand moisture transport in the atmosphere and interactions between precipitation and groundwater. Isotopic compositions of speleothems and ice cores, so called, ''paleoarchives'', can be utilized to interpret climate of the past and global circulation models (GCMs). The GCMs are able to explain the paleoarchives, can be validated by the precipitation isotopes. The developments of stable isotope analyzers make high-resolution isotopic studies feasible. Therefore, a high-resolution study of precipitation isotopes is needed. For this study, precipitation samples were collected for every 5 to 15 minutes, depending on precipitation rates, using an auto-sampler for precipitation isotopes near coastal area. The isotopic compositions of precipitation range from -5.7‰ (-40.1‰) to -10.8‰ (-74.3‰) for oxygen (hydrogen). The slope of ${\delta}^{18}O-{\delta}D$ diagram for the whole period is 6.8, but that of each storm is 5.1, 4.2, 7.9 and 7.7, respectively. It indicates that evaporation occurred during the first two storms, while the latter two storm did not experience any evaporation. The isotopic fractionations of precipitation has significant implications for the water cycle and high-resolution data of precipitation isotopes will be needed for the future studies.

Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea (청주 상대리지역에서 수막재배가 지하수-하천수 상호작용에 미치는 영향)

  • Moon, Sang-Ho;Kim, Yongcheol;Jeong, Youn-Young;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.105-120
    • /
    • 2016
  • Most of riverside in Korea, in case of application of water curtain cultivation (WCC) technique, has been inveterately suffering from the gradual drawdown of groundwater level and related shortage of water resources during the WCC peak time. We believe that the water resources issue in these riverside areas can be effectively solved when the interaction between groundwater and nearby surface water is well understood. To investigate the connection between stream and ground water, and the influence of stream water on the nearby aquifer, this study examined the water temperature and oxygen and hydrogen stable isotopic compositions. The study area is well-known strawberry field applying the WCC technique in Sangdae-ri, Gadeok-myon, Cheongju City, and the sampling was done from February 2012 through June 2014 for stream and ground water. Some groundwater wells near stream showed big temporal variations in water temperature, and their oxygen and hydrogen stable isotopes showed similar compositions to those of adjacent stream water. This indicates that the influence of stream water is highly reflected in the stable isotopic composition of groundwater. Four cross-sectional lines from stream to hillside were established in the study area to determine the spatial differences in water quality of wells. At the late stage of WCC in February to March, groundwater of wells in line with short cross-sectional length showed the narrow range of isotopic compositions; however, those in the long cross-sectional line showed a wide compositional range. It was shown that the influence of the stream water at the late WCC stage have reached to the distance of 160 to 165 m from stream line, which is equivalent to the whole length and one-third point in each short and long cross-sectional line, respectively. Therefore, the wide compositional range in the long cross-sectional lines was not only due to the influence of stream water, but apparently resulted from the change of relative impact of each groundwater supplying from two or more aquifers. In view of stable isotopic compositions, there seems to be three different aquifers in this study area, which is competing for dominance of water quality in wells at each period of WCC.

Rayleigh Fractionation of Stable Water Isotopes during Equilibrium Freezing (평형 냉동에 의한 물동위원소의 레일리분별)

  • Lee, Jeonghoon;Jung, Hyejung;Nyamgerel, Yalalt
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • Isotopic compositions of snow or ice have been used to reconstruct paleoclimate and to calculate contribution to streamwater using isotopic hydrograph separation as an end member. During freezing and melting of snow or ice, isotopic fractionation occurs between snow or ice and liquid water. Isotopic evolution during melting process has been studied by field, melting experiments and modeling works, but that during freezing has not been well studied. In this review, isotopic fractionation during equilibrium freezing is discussed using the linear relationship between two stable water isotopes (oxygen and hydrogen) and the Rayleigh fractionation. Snow, evaporated from nearby ocean and condensated, follows the Global Meteoric Water Line (slope of 8), but the melting and freezing of snow affect the linear relationship (slope of 19.5/3.1~6.3). The isotopic evolution of liquid water by freezing observed in the open system during Rayleigh fractionation is also seen in the closed system. The isotopic evolution of snow or ice in the open system where the snow or ice is continuously removed becomes more enriched than the residual liquid water by the fractionation factor. The isotopic evolution of snow or ice in the closed system eventually equals the original isotopic compositions of liquid water. It is expected the understanding of isotopic evolution of snow or ice by freezing to increase the accuracy of the paleoclimate studies and hydrograph separation.

Oxygen and Hydrogen Isotopic Compositions of Stream Waters in the Han River Basin (한강 수계 분지내 하천수의 산소, 수소 안정동위원소 조성)

  • 김규한;이세희
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2002
  • Oxygen and hydrogen isotopic compositions of stream water in the Han river basin are expressed by the equation of $\delta$D=6.6$\delta$$^{18}$ O-7.4, which is not satisfy the meteoric water line ($\delta$D=8$\delta$$^{18}$ O+10). It might be depended on the local climatic condition and the evaporation effect in the Han river basin. The $\delta$$^{18}$ O and $\delta$D values of stream water in the Han river basin range from -8.2 to -10$\textperthousand$ (avg. -9.1$\textperthousand$) and -60 to -96$\textperthousand$ (avg. -69$\textperthousand$), respectively. The stream water from the South Han river (8$\delta$$^{18}$ O= -8.9~ -10$\textperthousand$, avg.-9.3$\textperthousand$ $\delta$D: -66~ -96$\textperthousand$, avg.-69$\textperthousand$) is slightly more depleted in $^{18}$ O and D than those of North Han river ($\textperthousand$$^{18}$ O= -8.4~ -9.7$\textperthousand$, avg. -9.2$\textperthousand$, $\delta$D= -64~ -95$\textperthousand$, avg. -69$\textperthousand$). It reflects more altitude effect than the effect of latitude and Inflow of the $^{18}$ O eniched S $O_4$$^{2-}$ and HC $O_3$- from the carbonate rock and sulfide minerals in the Taebagsan and Hwanggangri mineralized zone. The Main stream water of the Han river having $\delta$D: -60~ -76$\textperthousand$ (avg.-68$\textperthousand$) and $\textperthousand$$^{18}$ O= -8.2~-10$\textperthousand$ (avg.9.0$\textperthousand$) is enriched in $^{18}$ O compared to the South and North Han river waters, which is caused by the evaporation effect. Binary simple mixing ratio of the Main Han river water between South and North Han river waters was obtained to be 6 : 4 by the isotopic data, suggesting a strong influence of South Han river water to the Main Han river water.

Old Water Contributions to a Granitic Watershed, Dorim-cheon, Seoul

  • Kim, Hyerin;Cho, Sung-Hyun;Lee, Dongguen;Jung, Youn-Young;Kim, Young-Hee;Koh, Dong-Chan;Lee, Jeonghoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • It is reported that the intensity of rainfall will likely increase, on average, over the world on 2000. For water resources security, many studies for flow paths from rainfall or snowmelt to subsurface have been conducted. In Korea, few isotopic studies for characterizations of flow path have been undertaken. For a better understanding of how water derived from atmosphere moves to subsurface and from subsurface to stream, an analysis of precipitation and stream water using oxygen-18 and deuterium isotopes in a small watershed, Dorim-cheon, Seoul, was conducted with high resolution data. Variations of oxygen-18 in precipitation greater than 10‰ (δ18Omax = −1.21‰, δ18Omin = −11.23) were observed. Isotopic compositions of old water (groundwater) assumed as the stream water collected in advance were −8.98‰ and −61.85‰ for oxygen and hydrogen, respectively. Using a two-component mixing model, hydrograph separation of the stream water in Dorim-cheon was conducted based on weighted mean value of δ18O. As a result, except of instant dominance of rainfall, contribution of old water was dominant during the study period. On average, 71.3% of the old water and 28.7% of rainfall contributed to the stream water. The results show that even in the small watershed, which is covered with thin soil layer in granite mountain region, the stream water is considerably influenced by old water inflow rather than rainfall.

Oxygen and Hydrogen Isotope Studies of the Hydrothermal Clay Deposits and Surrounded Rocks in the Haenam Area, Southwestern Part of the Korean Peninsula (한국 서남부, 해남지역의 열수 점토광상과 주변암에 대한 산소 및 수소동위원소 연구)

  • Kim, In Joon;Kusakabe, Minoru
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • In the present study, three representative hydrothermal clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were selected for oxygen and hydrogen isotope studies. Oxygen and hydrogen isotopic compositions of quartz, sericite, alunite and kaolin minerals from Seongsan, Ogmaesan, Haenam deposits and surrounded rocks of clay deposits have been measured. The ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite in the Seongsan mine are +8.4 to +11.1‰, +3.6 to 5.4‰, +4.8 to +5.8‰ and + 3.0 to +6.6‰, respectively. In the Ogmaesan mine, the ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite are +8.0 to +13.6‰, +2.8 to +6.7‰, +4.8 to +8.4‰ and +0.9 to +2.4‰, respectively. The ${\delta}^{18}O$ values of the Haenam mine range from +7.9 to +10.1‰ for quartz and from +4.5 to +6.5‰ for sericite. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.0 to + 7.8‰ for the granitic rocks. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.2 to + 10.7‰ for the volcanic rocks. The 8D values of kaolin, sericite and alunite in the Seongsan mine are -78 to -86‰, -71 to -90‰ and -43 to -77‰, respectively. In the Ogmaesan mine, the ${\delta}D$ values of kaolin, sericite and alunite are -73 to -80‰, -74 to -88‰ and -57 to -98‰, respectively. The ${\delta}D$ values of the Haenam mine range from -76 to -85‰ for sericite. The ${\delta}D$ values of the whole-rocks range from -77 to -105‰ for the granitic rocks. The ${\delta}D$ values of the wholerocks range from -76 to -100‰ for the volcanic rocks. The main result obtained oxygen and hydrogen isotope data can lead to the following interpretations on the origin of hydrothermal fluids in the clay deposits: Through the oxygen isotopic study, the formation temperature of the clay deposits was estimated from the coexisting minerals such as quartz-kaolin minerals and -sericite. Formation temperature of the acidic alteration zone is 165 to $280^{\circ}C$ in the Seongsan deposits, 175 to $250^{\circ}C$ in the Ogmaesan deposits and 250 to $350^{\circ}C$ in the Haenam deposits. Three clay deposits has been formed by magmatic water mixed with meteoric water. Furthermore, from this isotopic data, it is clarified that kaolin minerals and alunite are hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced in the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems. Oxidation of the $H_2S$ is thought to be generated when the vapor phase generated by boiling of the deep-seated water under the water table.

  • PDF

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

Oxygen and Hydrogen Isotope Studies of Fluid-Rock Interaction of the Radons-Sancheong Anorthositic Rocks (하동-산청 회장암질암의 유체-암석 상호반응에 대한 산소와 수소 동위원소 연구)

  • Park Young-Rok;Ko Bokyun;Lee Kwang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.224-237
    • /
    • 2004
  • The anorthositic rocks of the study area are divided into the northern Sancheong and southern Hadong anorthositic rocks depending on the different distribution patterns and lithologies. In order to evaluate the characteristics of the hydrothermal systems developed in the study area, oxygen and hydrogen isotopic compositions of the anorthositic rocks were measured. Oxygen isotopic values of the plagioclase exhibit an interesting spatial distribution. Plagioclase collected from the Sancheong anorthositic rocks in the northern part tends to have a relatively restricted range of $\delta$$^{18/0}$ values between 7.3 and 8.8$\textperthousand$, which are heavier than 'normal' $\delta$$^{18/O}$ value (6-6.5$\textperthousand$) typical for plagioclase of the fresh mantle-derived anorthosite, whereas plagioclase from the southern part is characterized by a wide range of $\delta$$^{18/O}$ values between -4.4 and 8.2$\textperthousand$ and much lighter values than 'normal' value for plagioclase of the fresh mantle-derived anorthosite. Plagioclase from the middle part has $\delta$$^{18/O}$ values heavier than the plagioclase from the southern part, but lighter than that from the northern part. The spatial distribution of $\delta$$^{18/O}$ values suggests that the decoupled hydrothermal flow systems might have been developed in the study area. Meteoric water dominated in the hydrothermal flow systems developed in the southern area, whereas magmatic fluid dominated in the northern area. The relationship between water content and hydrogen isotopic composition of anorthosites shows a positive correlation. The positive correlation indicates that fluids exsolved from magma during magmatic differentiation caused deuteric alteration of anorthositic rocks involving replacement of pyroxenes to amphiboles. After the deuteric alteration, hydrothermal system developed by meteoric water dominated the southern area, and erased record of the hydrothermal system developed by magmatic fluid at earlier stage. However, the development of meteoric hydrothermal system has been limited in the southern area only, and could not affect the Sancheong anorthositic rocks in the northern area. The abundant occurrences of secondary alteration minerals such as sericite, calcite, and chlorite in the southern Hadong anorthosite relative to the northern Sancheong anorthositc seem to be related to the overlapping of two distinct hydrothermal systems in the southern area.

Hydrogeochemical and geostatistical study of shallow alluvial groundwater in the Youngdeok area

  • Kim, Nam-Jin;Yun, Seong-Taek;Kwon, Man-Jae;Kim, Hyoung-Soo;Kim, Chang-Hoon;Koh, Yong-Kwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • Multi-regression statistical analyses were applied for the water quality data of shallow alluvial ground water (n = 47) collected from the Youngdeok area, in order to quantitatively generalize the natural (non-anthropogenic) causes of regional water quality variation. Seven samples having the high contamination index ( $C_{a}$ > 3) reflect the striong effects by anthropogenic activity. Most of the alluvial groundwaters have acquired their quality primarily due to the dissolution of carbonate minerals. The results of multi-regression analysis show that chlorine is mainly derived from seawater effect. Sulfur isotopic compositions of dissolved sulfur and the S $O_4$/Cl ratio also enable us to discriminate the samples (n = 18) which are affected by atmospheric input of marine aerosol (sea-spray) and also by mixing between freshwater and seawater. Hydrogen and oxygen isotope data of the samples collected lie close to the local meteoric water line obtained from nearby Pohang city but has lower slope (5.45) on the $\delta$D-$^{18}$ O plot, indicating that alluvial groundwater was recharged from infiltrated meteoric water which has undergone some degree of kinetic evaporation. The estimated initial isotopic composition of the recharged water ($\delta$D = -74.8$^{0}$ /$_{00}$, $\delta$$^{18}$ O = -10.8$^{[-1000]}$ /$_{[-1000]}$ ) suggests that the alluvial ground water recharge largely occurs during summer storm events.s.s.

  • PDF