DOI QR코드

DOI QR Code

Rayleigh Fractionation of Stable Water Isotopes during Equilibrium Freezing

평형 냉동에 의한 물동위원소의 레일리분별

  • Received : 2020.12.21
  • Accepted : 2021.01.26
  • Published : 2021.02.28

Abstract

Isotopic compositions of snow or ice have been used to reconstruct paleoclimate and to calculate contribution to streamwater using isotopic hydrograph separation as an end member. During freezing and melting of snow or ice, isotopic fractionation occurs between snow or ice and liquid water. Isotopic evolution during melting process has been studied by field, melting experiments and modeling works, but that during freezing has not been well studied. In this review, isotopic fractionation during equilibrium freezing is discussed using the linear relationship between two stable water isotopes (oxygen and hydrogen) and the Rayleigh fractionation. Snow, evaporated from nearby ocean and condensated, follows the Global Meteoric Water Line (slope of 8), but the melting and freezing of snow affect the linear relationship (slope of 19.5/3.1~6.3). The isotopic evolution of liquid water by freezing observed in the open system during Rayleigh fractionation is also seen in the closed system. The isotopic evolution of snow or ice in the open system where the snow or ice is continuously removed becomes more enriched than the residual liquid water by the fractionation factor. The isotopic evolution of snow or ice in the closed system eventually equals the original isotopic compositions of liquid water. It is expected the understanding of isotopic evolution of snow or ice by freezing to increase the accuracy of the paleoclimate studies and hydrograph separation.

고체상의 눈 또는 얼음의 안정동위원소 값은 과거의 기후를 복원하고 동위원소 수문분리의 단성분으로 기여율을 계산하는 데에 사용되어 왔다. 융해와 냉동이 일어나면서 눈 또는 얼음과 액체상의 물 사이의 동위원소 분별작용이 일어나는데, 융해는 상대적으로 현장, 실험 및 모델연구를 통해 연구결과가 제시되어 있지만, 냉동에 대해서는 알려진 것이 많지 않다. 본 논평에서는 평형 냉동이 발생할 때 물의 두 안정동위원소인 산소, 수소의 선형관계 및 레일리분별과정을 통해 냉동에 의한 동위원소 분별과정을 고찰하였다. 해양에서 증발한 수증기에 의해 응축된 눈은 기울기 8을 가지는 지구천수선을 따라 움직이지만, 냉동 및 융해가 발생하게 되면 기울기 19.5/3.1~6.3을 가지는 선형관계를 나타내게 된다. 평형냉동 동안 레일리분별과정에 의해 액체상인 물은 열린 계와 닫힌계에서 같은 동위원소변동을 보여 주었다. 눈 또는 얼음이 제거되는 열린 계에서는 남아있는 물의 안정동위원소와 분별계수만큼의 차이를 가지면서 높은 값을 나타내었다. 닫힌 계에서는 초기 액체상의 물의 동위원소 값으로 눈 또는 얼음은 수렴하였다. 냉동에 의한 눈 또는 얼음의 동위원소변동과정은 고기후 연구 및 수문분리의 정확도를 증가시킬 것으로 기대된다.

Keywords

References

  1. Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, v.16, p.436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
  2. Earman, S., Campbell, A.R., Phillips, F.M. and Newman, B.D. (2006) Isotopic exchange between snow and atmospheric water vapor: estimation of the snowmelt component of groundwater recharge in the southwestern United States. J Geophy Res, v.111, D09302, doi:10.1029/2005JD006470.
  3. Feng, X., Taylor, S., Renshaw, C.E. and Kirchner, J.W. (2002) Isotopic evolution of snowmelt, 1, A physically based one - dimensional model. Water Resour Res, v.38, p.1217.
  4. Ham, J.Y., Hur, S.D., Lee, W.S., Han, Y., Jung, H. and Lee, J. (2019) Isotopic variations of meltwater from ice by isotopic exchange between liquid water and ice. J Glaciol, v.65, p.1035-1043. https://doi.org/10.1017/jog.2019.75
  5. Jung, Y.Y., Koh, D.C., Lee, J. and Ko, K.S. (2013) Applications of isotope ratio infrared spectroscopy (IRIS) to analysis of stable isotopic compositions of liquid water. Econ Environ Geol, v.46, p.495-508. https://doi.org/10.9719/EEG.2013.46.6.495
  6. Kim, H., Cho, S.H., Lee, D., Jung, Y.Y., Kim, Y.H., Koh, D.C. and Lee, J. (2017) Influence of pre-event water on streamflow in a granitic watershed using hydrograph separation. Environ Earth Sci, v.76, p.82. https://doi.org/10.1007/s12665-017-6402-6
  7. Kendall, C. and McDonnell, J.J. (1998) Isotope tracers in catchment hydrology. Elsevier.
  8. Kim, J., Jeen, S.W., Lim, H.S., Lee, J., Kim, O.S., Lee, H., and Hong, S.G. (2000) Hydrogeological characteristics of groundwater and surface water associated with two small lake systems on King George Island, Antarctica. J Hydrol, v.590, p.125537. https://doi.org/10.1016/j.jhydrol.2020.125537
  9. Lee, J., Feng, X., Posmentier, E.S., Faiia, A.M. and Taylor, S. (2009) Stable isotopic exchange rate constant between snow and liquid water. Chem Geol, v.260, p.57-62. https://doi.org/10.1016/j.chemgeo.2008.11.023
  10. Lee, J., Feng, X., Faiia, A.M., Posmentier, E.S., Kirchner, J.W., Osterhuber, R. and Taylor, S. (2010a) Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chem Geol, v.270, p.126-134. https://doi.org/10.1016/j.chemgeo.2009.11.011
  11. Lee, J., Feng, X., Faiia, F., Posmentier, E., Osterhuber, R. and Kirchner, J. (2010b) Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water. Water Resour Res, v.46, W11512, doi:10.1029/2009WR008306.
  12. Lee, J., Hur, S.D., Lim, H.S. and Jung, H. (2020) Isotopic characteristics of snow and its meltwater over the Barton Peninsula, Antarctica. Cold Reg Sci Technol, v.173, p.102997. https://doi.org/10.1016/j.coldregions.2020.102997
  13. Lee, J., Koh, D.C. and Choo, M.K. (2014) Influences of fractionation of stable isotopic composition of rain and snowmelt on isotopic hydrograph separation. J Korean Earth Sci Soc, v. 35, p.97-103. https://doi.org/10.5467/JKESS.2014.35.2.97
  14. Lee, K.-S., Park, Y., Kim, Y., Jeong, J.-H., Park, S.-K., Shin, H.-S. and Bong, Y.-S. (2006) A preliminary hydrograph separation study in a small forested watershed using natural tracers. J Geol Soc Korea, v.42, p.427-437.
  15. Mason-Delmotte, V., Hou, S., EKaykin, A., Jouzel, J., Aristarain, A., Bernardo, R.T., Bromwich, D., Cattani, O., Delmotte, M., Falourd, S., Frezzotti, M., Gallee, H., Genoni, L., Isaksson, E., Landais, A., Helsen, M.M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit, J.R., Royer, A., Uemura, R., Schmidt, G.A., Schlosser, E., Simoes, J.C., Steig, E.J., Stenni, B., Stievenard, M., van den Broeke, M.R., van de Wal, R.S.W., van de Berg, W.J., Vimeux, F. and White, J.W.C. (2008) A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling. J of Clim, v.21, p.3359-3387. https://doi.org/10.1175/2007JCLI2139.1
  16. Michel, F.A. (1986) Isotope geochemistry of frost-blister ice, North Fork Pass, Yukon, Canada. Can J Earth Sci, v.23, p.543-549. https://doi.org/10.1139/e86-054
  17. Meyer, H., Opel, T., Laepple, T., Dereviagin, A.Y., Hoffmann, K. and Werner, M. (2015) Long-term winter warming trend in the Siberian Arctic during the mid-to late Holocene. Nature Geosci, v.8, doi:10.10385/NGEO02349.
  18. Nyamgerel, Y., Han, Y., Kim, S., Hong, S.B., Lee, J. and Hur, S.D. (2020) Chronological characteristics for snow accumulation on Styx Glacier in northern Victoria Land, Antarctica. J Glaciol, v.66, p.916-926. https://doi.org/10.1017/jog.2020.53
  19. O'Neil, J.R. (1968) Hydrogen and oxygen isotope fractionation between ice and water. J Phys Chem, v.72, p.3683-3684. https://doi.org/10.1021/j100856a060
  20. Lord Rayleigh (1902) On the distillation of binary mixture. Phil Mag, v.4, p.521-537. https://doi.org/10.1080/14786440209462876
  21. Suzuoki, T. and Kumura, T. (1973) D/H and 18O/16O fractionation in ice-water systems. Mass Spectro, v.21, p.229-233. https://doi.org/10.5702/massspec1953.21.229
  22. Taylor, S., Feng, X., Kirchner, J.W., Osterhuber, R., Klaue, B. and Renshaw, C.E. (2001) Isotopic evolution of a seasonal snowpack and its melt. Water Resour Res, v.37, p.759-769. https://doi.org/10.1029/2000WR900341
  23. Taylor, S., Feng, X., Kirchner, J.W., Osterhuber, R., Klaue, B. and Renshaw, C.E. (2001) Isotopic evolution of a seasonal snowpack and its melt. Water Resour Res, v.37, p.759-769. https://doi.org/10.1029/2000WR900341
  24. Throckmorton, H.M., et al. (2016) Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrol Process, v.30, p.4972-4986. https://doi.org/10.1002/hyp.10883