• Title/Summary/Keyword: oxide gas sensor

Search Result 288, Processing Time 0.024 seconds

Chemiresistive Sensor Based on One-Dimensional WO3 Nanostructures as Non-Invasive Disease Monitors

  • Moon, Hi Gyu;Han, Soo Deok;Kim, Chulki;Park, Hyung-Ho;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.291-294
    • /
    • 2014
  • In this study, a chemiresistive sensor based on one-dimensional $WO_3$ nanostructures is presented for application in non-invasive medical diagnostics. $WO_3$ nanostructures were used as an active gas sensing layer and were deposited onto a $SiO_2/Si$substrate using Pt interdigitated electrodes (IDEs). The IDE spacing was $5{\mu}m$ and deposition was performed using RF sputter with glancing angle deposition mode. Pt IDEs fabricated by photolithography and dry etching. In comparison with thin film sensor, sensing performance of nanostructure sensor showed an enhanced response of more than 20 times when exposed to 50 ppm acetone at $400^{\circ}C$. Such a remarkable faster response can pave the way for a new generation of exhaled breath analyzers based on chemiresistive sensors which are less expensive, more reliable, and less complicated to be manufactured. Moreover, presented sensor technology has the potential of being used as a personalized medical diagnostics tool in the near future.

The gas sensing characteristic of the porous tungsten oxide thin films based on anodic reaction (양극반응으로 제조된 다공질 WO3 박막의 가스센서 특성)

  • Lee, Hong-Jin;Song, Kap-Duk;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In this paper, the gas responses of tungsten oxide films prepared by anodic reaction was discussed. Sensing electrodes and heating electrodes were patterned by photolithography method on quartz substrate. Porous tungsten oxide was fabricated in electrolyte solutions of 5 % HF (HF :$C_2H_6OH:H_2O$=3 : 2 : 20) by anodic reaction. The anodic reaction with metal (platinum wire) as a cathode and the sensing device as an anode was conducted under the various reaction times (1-10 min) at 10 mA/$cm^2$ The surface structure and morphology of the fabricated sensor have been analysed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). All the peaks of XRD results were well indexed to the pure phase pattern. The average diameter of the porous tungsten oxide surface were ranged about 100 nm. The fabricaed sensor showed good sensitivity to 200 ppm toluene at operating temperature of $250^{\circ}C$.

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction (스핀코팅법으로 제작한 산화아연/산화구리 이종접합의 정류 및 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to $200^{\circ}C$. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as $100^{\circ}C$ and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.

A comparison between thick-film ZnO and $SnO_2$ gas sensors for CO gas detection (CO 검지용 후막형 ZnO와 $SnO_2$ 가스센서의 비교)

  • Kim, Bong-Hee;Yi, Seung-Hwan;Kang, Hee-Bok;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.209-212
    • /
    • 1991
  • Recently, oxide semiconductor gas sensors consisted of n-type semiconductor materials such as $SnO_2$, ZnO and $Fe_2O_3$ have been widely used to detect reducing gases. The advantage of thick-film technology include the possibility of mass-production and automation, that of integrating the sensing element in a hybrid circuit and that of fuctional trimming of the sensor and/or the circuit. which would enable really interchangeable transducers to be prepared. In this paper, we made ZnO and $SnO_2$ gas sensors and investigated the sensitivity to CO gas. Therefore, we compared a ZnO gas sensor with a $SnO_2$ gas sensor.

  • PDF

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

Thin Film Gas Sensors Based on Tin Oxide for Acetonitrile (산화주석 기반의 아세토니트릴 검지용 박막형 가스센서)

  • Choi, Nak-Jin;Ban, Tae-Hyun;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Kim, Jae-Chang;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.218-223
    • /
    • 2004
  • Thin film gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is acetonitrile ($CH_{3}CN$) that is simulant gas of blood agent gas. Sensing materials are $SnO_{2}$, $SnO_{2}$/Pt, and (Sn/Pt)oxidation with thickness from $1000{\AA}$ to $3000{\AA}$. Sensor was consisted of sensing electrode with interdigit (IDT) type in front side and a heater in back side. Its dimension was $7{\times}10{\times}0.6mm^{3}$. Fabricated sensor was measured as flow type and monitored real time using PC. The optimal sensing material for $CH_{3}CN$ was {Sn($3000{\AA}$)/Pt($30{\AA}$)}oxidation and its sensitivity and operating temperature were 30%, $300^{\circ}C$ in $CH_{3}CN$ 3 ppm.

Fabrication of oxide semiconductor thin film gas sensor array (산화물 반도체 박막 가스센서 어레이의 제조)

  • 이규정;김석환;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.705-711
    • /
    • 2000
  • A thin film oxide semiconductor micro gas sensor array which shows only 60 mW of power consumption at an operating temperature of $300^{\circ}C$ has been fabricated using microfabrication and micromachining techniques. Excellent thermal insulation of the membrane is achieved by the use of a double-layer structure of $0.1\mum\; thick\; Si_3N_4 \;and\; 1 \mum$ thick phosphosilicate glass (PSG) prepared by low-pressure chemical-vapor deposition (LPCVD) and atmospheric-pressure chemical-vapor deposition (APCVD), respectively. The sensor array consists of such thin film oxide semiconductor sensing materials as 1 wt.% Pd-doped $SnO_2,\; 6 wt.% A1_2O_3-doped\; ZnO,\; WO_3$/ and ZnO. Baseline resistances of the four sensing materials were found to be stable after the aging for three days at $300^{\circ}C$. The thin film oxide semiconductor micro gas sensor array exhibited resistance changes usable for subsequent data processing upon exposure to various gases and the sensitivity strongly depended on the sensing layer materials.

  • PDF

Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor (메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용)

  • Kim, Nam-Hyon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In this study, mesoporous tin oxide was synthesized by sol-gel method using $C_{16}TMABr$ surfactant as a template in a basic condition. The optimum conditions for the synthesis of mesoporous $SnO_2$ were investigated and the obtained samples were characterized by XRD, nitrogen adsorption and TEM analysis. A mesoporous and nanostructured $SnO_2$ gas sensor with Au electrode and Pt heater has been fabricated on alumina substrate as one unit via a screen printing process. Sensing abilities of fabricated sensors were examined for CO and $CH_4$ gases, respectively, at $350^{\circ}C$ in the concentration range of 1~10,000 ppm. Influence of loading amount of palladium impregnated on $SnO_2$ was also tested in detection of those gases. High sensitivity to detecting gases and the fast response speed with stability were obtained with the mesoporous tin oxide sensor as compared to a non-porous one under the same detection conditions.

Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam (전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성)

  • Lee, Sangmin;Jung, Min-Jung;Lee, Kyeong Min;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.299-305
    • /
    • 2017
  • Activated carbon fibers (ACFs) were surface-modified by electron beam (E-beam) irradiation and used as a gas sensor electrode to investigate the effect of E-beam on nitric oxide (NO) gas sensing performance. XPS results showed that the oxygen component of ACFs surface treated by E-beam decreased and $sp^2$ bonded carbon of ACFs surface increased. These results were attributed to the structural transformation of ACFs surface irradiated by E-beam. NO gas sensitivity of the electrode composed of ACFs irradiated by100 kGy increased from about 4% to 8%, and the response time was also meaningfully enhanced from 360 s to 120 s. This is due to the fact that the $sp^2$ carbon bond increased by E-beam irradiation of activated carbon fibers, which significantly affects the resistance change of the electrode in NO gas sensing.