• 제목/요약/키워드: oxide(NO)

검색결과 4,246건 처리시간 0.031초

Function and regulation of nitric oxide signaling in Drosophila

  • Sangyun Jeong
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100006.1-100006.10
    • /
    • 2024
  • Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.

Involvement of Nitric Oxide in UVB-induced pigmentation

  • Horikoshi, Toshio;Sasaki, Minoru;Nakahara, Michio;Uchiwa, Hideyo;Miyachi, Yoshiki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.205-208
    • /
    • 2002
  • Nitric oxide (NO) is a newly described transmitter involved with cell to cell communication that is generated in biologic tissues by specific types of nitric oxide synthase (NOS), which metabolize L-arginine and molecular oxygen to citrulline and nitric oxide. In the skin. NO has been reported to play an important role in such diseases as psoriasis, atopic dermatitis, and contact dermatitis, as well as act as an important modulator in UVB-induced erythema. Ultraviolet B irradiation to the skin evokes an increase in NO production in the epidermis through two pathways; induction of inducible NOS, mediated by inflammatory cytokines, and elevation of constitutive neuronal NOS activity. In a cell culture system, it has been demonstrated that NO functions as a melanogen after being produced in keratinocytes in response to UVB-irradiation. NO-stimulated melanogenesis in melanocytes is mediated by the cGMP/PKG pathway. In this study, up-regulation of tyrosinase gene expression by NO-stimulation and the involvement of NO in UVB-induced pigmentation were examined. In NO-induced melanogenesis, protein synthesis and tyrosinase activity increased along with an up-regulation of tyrosinase gene expression. In an animal model, UVB-induced pigmentation in skin was suppressed by sequential daily treatments with a specific inhibitor of NOS. Thus, NO plays an important role in UVB-induced pigmentation, where its function as a melanogen is considered to be one of the mechanisms. Together with its role in the development of erythema, NO contributes to the total protective response of skin against UVB-irradiation.

  • PDF

전하 트랩 형 비휘발성 기억소자를 위한 재산화 산화질화막 게이트 유전악의 특성에 관한 연구 (Characteristics of the Reoxidized Oxynitride Gate Dielectric for Charge Trap Type NVSM)

  • 이상은;박승진;김병철;서광열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.37-40
    • /
    • 1999
  • For the first time, charge trapping nonvolatile semiconductor memories with the deoxidized oxynitride gate dielectric is proposed and demonstrated. Gate dielectric wit thickness of less than 1 nm have been grown by postnitridation of pregrown thermal silicon oxides in NO ambient and then reoxidation. The nitrogen distribution and chemical state due to NO anneal/reoxidation were investigated by M-SIMS, TOF-SIMS, AES depth profiles. When the NO anneal oxynitride film was reoxidized on the nitride film, the nitrogen at initial oxide interface not only moved toward initial oxide interface, but also diffused through the newly formed tunnel oxide by exchange for oxygen. The results of reoxidized oxynitride(ONO) film analysis exhibits that it is made up of SiO$_2$(blocking oxide)/N-rich SiON interface/Si-rich SiON(nitrogen diffused tunnel oxide)/Si substrate. In addition, the SiON and the S1$_2$NO Phase is distributed mainly near the tunnel oxide, and SiN phase is distributed mainly at tunnel oxide/Si substrate interface.

  • PDF

연속적 급속열처리법에 의한 재산화질화산화막의 특성 (Characteristics of Reoxidized-Nitrided-Oxide Films Prepared by Sequential Rapid Thermal Oxidation and Nitridation)

  • 노태문;이경수;이중환;남기수
    • 대한전자공학회논문지
    • /
    • 제27권5호
    • /
    • pp.729-736
    • /
    • 1990
  • Oxide (RTO), nitrided-oxide(NO), and reoxidized-nitrided-oxide(ONO) films were formed by sequential rapid thermal processing. The film composition was investigated by Auger electron spectroscopy(AES). The Si/SiO2 interface and SiO2 surface are nitrided more preferentially than SiO2 bulk. When the NO is reoxidized, [N](atomic concentration of N) in the NO film decreased` especially, the decrease of [N] at the surface is considerable. The weaker the nitridation condition is, the larger the increase of thickness is as the reoxidation proceeds. The elelctrical characteristics of RTO, NO, and ONO films were evaluated by 1-V, high frequency (1 MHz) C-V, and high frequency C-V after constant current stress. The ONO film-which has 8 nm thick initial oxide, nitrided in NH3 at 950\ulcorner for 60 s, reoxidized in O2 at 1100\ulcorner for 60 s-shows good electrical characteristics such as higher electrical breakdown voltage and less variation of flat band voltage under high electric field than RTO, and NO films.

  • PDF

Inhibitory Effect of Esculetin on the Inducuble Nitric Oxide Synthase Expression in TNF-stimulated 3T3-L1 Adipocytes

  • Yang, Jeong-Yeh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권5호
    • /
    • pp.283-287
    • /
    • 2003
  • While nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is beneficial for host survival, it is also detrimental to the host. Thus, regulation of iNOS gene expression may be an effective therapeutic strategy for the prevention of unwanted reactions at various pathologic conditions. During the screening process for the possible iNOS regulators, we observed that esculetin is a potent inhibitor of cytokine-induced iNOS expression. The treatment of 3T3-L1 adipocytes with the tumor necrosis factor-${\alpha}$ (TNF) induced iNOS expression, leading to enhanced NO production. TNF-induced NO production was inhibited by esculetin in a dose-dependent manner. Esculetin inhibited the TNF-induced NO production at the transcriptional level through suppression of iNOS mRNA and subsequent iNOS protein expression. These results suggest esculetin, a component of natural products, as a naturally occurring, nontoxic means to attenuate iNOS expression and NO-mediated cytotoxicity.

Streptococcus mutans Strains Isolated in Korea Can Hardly Metabolize Exogenous Nitric Oxide

  • Lee, Hwa Jeong;Bang, Iel Soo
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.217-221
    • /
    • 2015
  • Cariogenic Streptococcus mutans encounters a variety of host defense factors produced in oral cavity. Nitric oxide (NO) and NO-mediated reactive nitrogen species are potential antimicrobials of innate immunity that can threaten the fitness of S. mutans in their ecological niches. Streptococcal strategies to detoxify cytotoxic NO, which allow S. mutans to persist in caries or other environments of the oral cavity, remain unknown. In this study, we directly measured NO consumption rates of S. mutans isolated in Korea. Surprisingly, all S. mutans strains were unable to consume exogenous NO efficiently, while an intracellular parasite Salmonella enterica serovar Typhimurium expressing the NO-metabolizing enzyme flavohemoglobin consumed most of the NO. This result suggested that S. mutans has alternative detoxification systems for tolerating NO-induced nitrosative stresses.

NITRIC OXIDE와 치수 (NITRIC OXIDE AND DENTAL PULP)

  • 김영경;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제27권5호
    • /
    • pp.543-551
    • /
    • 2002
  • Nitric oxide (NO) is a small molecule (mol. wt. 30 Da) and oxidative free radical. It is uncharged and can therefore diffuse freely within and between cells across membrane. Such characteristics make it a biologically important messenger in physiologic processes such as neurotransmission and the control of vascular tone. NO is also highly toxic and is known to acts as a mediator of cytotoxicity during host defense. NO is synthesized by nitric oxide synthase (NOS) through L-arginine/nitric oxide pathway which is a dioxygenation process. NO synthesis involves several participants, three co-substrates, five electrons, five co-factors and two prosthetic groups. Under normal condition, low levels of NO are synthesized by type I and III NOS for a short period of time and mediates many physiologic processes. Under condition of oxidant stress, high levels of NO are synthesized by type II NOS and inhibits a variety of metabolic processes and can also cause direct damage to DNA. Such interaction result in cytostasis, energy depletion and ultimately cell death. NO has the potential to interact with a variety of intercellular targets producing diverse array of metabolic effects. It is known that NO is involved in hemodynamic regulation, neurogenic inflammation, re-innervation, management of dentin hypersensitivity on teeth. Under basal condition of pulpal blood flow, NO provides constant vasodilator tone acting against sympathetic vasoconstriction. Substance P, a well known vasodilator, was reported to be mediated partly by NO, while calcitonin-gene related peptide has provided no evidence of its relation with NO. This review describes the roles of NO in dental pulp in addition to the known general roles of it.

Measurements of fractional exhaled nitric oxide in pediatric asthma

  • Hahn, Youn-Soo
    • Clinical and Experimental Pediatrics
    • /
    • 제56권10호
    • /
    • pp.424-430
    • /
    • 2013
  • Exhaled nitric oxide (NO) has been extensively investigated as a noninvasive marker of airway inflammation in asthma. The increased NO expression induced by inflammatory mediators in airways can be monitored easily in exhaled air from asthmatic children. Based on the relationship between the increased NO expression and eosinophilic airway inflammation, fractional exhaled nitric oxide (FeNO) measurements become an important adjunct for the evaluation of asthma. In addition, the availability of portable devices makes it possible to measure FeNO more easily and frequently in the routine pediatric practice. Despite various confounding factors affecting its levels, FeNO can be applicable in diagnosing asthma, monitoring treatment response, evaluating asthma control, and predicting asthma exacerbations. Thus, although pulmonary function tests are the standard tools for objective measurements of asthmatic control, FeNO can broaden the way of asthma monitoring and supplement standard clinical asthma care guidelines.

Effect of Various Herbal Extracts on Nitric Oxide Production in Lipopolysaccharide-induced Murine Peritoneal Macrophages

  • Ko, Young-Kwon;Seo, Dong-Wan;Ahn, Seong-Hoon;Bae, Gyu-Un;Yoon, Jong-Woo;Hong, Sung-Youl;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • Biomolecules & Therapeutics
    • /
    • 제7권3호
    • /
    • pp.210-215
    • /
    • 1999
  • Nitric oxide (NO) can mediate numerous physiological processes, including vasodilation, neurotransmission, cytotoxicity, secretion and inflammatory response. The regulation of NO production by inducible NO synthase (iNOS) is considered to be the possible target of the development of anti-inflammatory agent, based on the observation that NO can activate cyclooxygenase, which results in the synthesis of prostaglandins. In an effort to screen new inhibitor of NO production from about 352 species of herbal extracts, we found 9 species with 50% or more inhibitory effect on NO production. Especially, the dose-dependent inhibition of NO production in lipopolysaccharide-treated macrophages by two of the herbal extracts (Artemisiae asiaticae Herba and Saussureae Radix) was due to the decrease in the expression of iNOS.

  • PDF

활성화한 RAW 264.7 세 포주에서 인삼 Polyacetylene류의 Nitric Oxide 생성저해 (Inhibitors of Nitric Oxide Synthesis from Ginseng in Activated Macrophages)

  • 류재하;장세란
    • Journal of Ginseng Research
    • /
    • 제22권3호
    • /
    • pp.181-187
    • /
    • 1998
  • Nitric Oxide (NO), derived from L-arginine, is produced by two types (constitutive and inducible) of nitric oxide synthase (NOS). The NO produced in large amounts by the inducible NOS is known to be responsible for the vasodilation and hypotension observed in septic shock. We have found three polyacetylene compounds which inhibited the production of NO in LPS-activated RAW 264.7 cells. Their structures were identified as panauynol, ginsenoyne A and PQ-6 by the spec- troscopic analysis (IC50 values were 32.3 $\mu$M, 2.3 $\mu$M, 1.5 $\mu$M, respectively). These polyacetylenes may be useful candidates for the development of new drug to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  • PDF