• Title/Summary/Keyword: oxidation stress

Search Result 397, Processing Time 0.024 seconds

Oxidation Behavior around the Stress Corrosion Crack Tips of Alloy 600 under PWR Primary Water Environment (PWR 1차측 환경에서 Alloy 600 응력부식균열 선단 부근에서의 산화 거동)

  • Lim, Yun Soo;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-150
    • /
    • 2012
  • Stress corrosion cracks in Alloy 600 compact tension specimens tested at $325^{\circ}C$ in a simulated primary water environment of pressurized water reactor were analyzed by analytical transmission electron microscopy and secondary ion mass spectroscopy (SIMS). From a fine-probe chemical analysis, oxygen was found on the grain boundary just ahead of the crack tip, and chromium oxides were precipitated on the crack tip and the grain boundary attacked by the oxygen diffusion, leaving a Cr/Fe depletion (or Ni enrichment) zone. The oxide layer inside the crack was revealed to consist of a double (inner and outer) layer. Chromium oxides existed in the inner layer, with NiO and (Ni,Cr) spinels in the outer layer. From the nano-SIMS analysis, oxygen was detected at the locations of intergranular chromium carbides ahead of the crack tip, which means that oxygen diffused into the grain boundary and oxidized the surfaces of the chromium carbides. The intergranular chromium carbide blunted the crack tip, thereby suppressing the crack propagation.

Scavenging Effect of Extract from Perilla frutescens and Rosmarinic Acid from Free Radical and Lipid Peroxidation

  • Wu, Ting Ting;Hwang, Bo-Ra;Cho, Eun-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.224-229
    • /
    • 2011
  • The radical scavenging activity and inhibition effect from lipid peroxidation induced by peroxyl radical of methanol extract from Perilla frutescens and its active compound, rosmarinic acid (RA), were investigated in vitro. The treatment of extract and RA scavenged 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radical (${\cdot}OH$) and nitric oxide in a concentration-dependent manner. In particular, the extract and RA showed strong radical scavenging activity against ${\cdot}OH$, the most toxic and reactive radical. In addition, Perilla frutescens and RA effectively inhibited lipid oxidation induced by sodium nitroprusside and 2,2'-azobis(2-aminopropane) dihydrochloride, determined by the ferric thiocyanate method. The present results suggest that Perilla frutescens and RA play a protective role against oxidative stress induced by free radical and lipid peroxidation.

The Technology of Sloped Wall SWAMI for VLSI and Analysis of Leakage Current (고집적 회로를 위한 경사면 SWAMI 기술과 누설전류 분석)

  • 이용재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.3
    • /
    • pp.252-259
    • /
    • 1990
  • This paper present new scheme for a Side Wall Masked Isolation(SWAMI) technology which take all the advatages provided by conventional LOCOS process. A new SWAMI process incorporates a sloped sidewall by reactive ion etch and a layer of thin nitride around the side walls such that both intrinsic nitride stress and volume expansion induced stress are greatly reduced. As a fabricate results, a defect-free fully recessed zero bird's beak local oxidation process can be realized by the sloped wall anisotropic oxide isolation. No additional masking step is required. The leakage current of PN diodes of this process were reduced than PN diode of conventional LOCOS process. On the other hand, the edge junction part was larger than the flat juction part in the density of leakage current.

  • PDF

A Study on the Mechanical Change of Emulsion-Treated Hair by Color

  • Ko, Hee-Ja;Park, Jang-Soon
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.127-133
    • /
    • 2022
  • With the increasing interest in the expression of individuality and appearance of modern people, it is time to conduct research and development of novel hair coloring from various angles. Therefore, taking into account the order of discoloration of hair pigments, we selected a creative and novel emulsion as a novel material for hair coloring, rather than a cosmetic material such as hot water extract using natural products dealt with in previous studies, commercially available hair manicure, and oxidation hair dye for hair. Thus, the change in tensile strength and elongation of hair samples by color was studied. As a result of the study, hair with green emulsion paint had a significantly higher maximum load, maximum stress, maximum elongation and breaking load, breaking stress, breaking elongation values are shown. Maximum in terms of modulus, green emulsion applied hair and the control group were higher in the 0-15s strain and 15-145s sections, respectively, and the tangential modulus value was much higher in the control group than the experimental group hairs in all the 0-145s sections. This study, which analyzes the dynamic changes of hair samples that extend the daily color gamut, will greatly contribute to the development of innovative hair coloring materials in the research and production of hair beauty works, and it is judged that it will also contribute to the development of the beauty industry.

Electrical Characterization of Ultrathin $SiO_2$ Films Grown by Thermal Oxidation in $N_2O$ Ambient ($N_2O$ 분위기에서 열산화법으로 성장시킨 $SiO_2$초박막의 전기적 특성)

  • Gang, Seok-Bong;Kim, Seon-U;Byeon, Jeong-Su;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • The ultrathin oxide films less than 100$\AA$ were grown by thermal oxidation in $N_2O$ ambient to improve the controllability of thickness, thickness uniformity, process reproducibility and their electrical properties. Oxidation rate was reduced significantly at very thin region due to the formation of oxynitride layer in $N_2O$ ambient and moreover nitridation of the oxide layer was simultaneously accompanied during growth. The nitrogen incorporation in the grown oxide layer was characterized with the wet chemical etch-rate and ESCA analysis of the grown oxide layer. All the oxides thin films grown in $N_2O$, pure and dilute $O_2$ ambients show Fowler-Nordheim electrical conduction. The electrical characteristics of thin oxide films grown in $N_2O$ such as leakage current, electrical breakdown, interface trap density generation due to the injected electron and reliability were better than those in pure or dilute ambient. These improved properties can be explained by the fact that the weak Si-0 bond is reduced by stress relaxation during oxidation and replacement by strong Si-N bond, and thus the trap sites are reduced.

  • PDF

Anti-inflammatory and anti-oxidative effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on β-amyloid-induced microglial activation

  • Yang, Seung-Ju;Kim, Jiae;Lee, Sang Eun;Ahn, Jee-Yin;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.634-639
    • /
    • 2017
  • We aimed to assess the anti-inflammatory and antioxidative properties of KHG26792, a novel azetidine derivative, in amyloid ${\beta}$ ($A{\beta}$)-treated primary microglial cells. KHG26792 attenuated the $A{\beta}-induced$ production of inflammatory mediators such as IL-6, $IL-1{\beta}$, $TNF-{\alpha}$, and nitric oxide. The levels of protein oxidation, lipid peroxidation, ROS, and NADHP oxidase enhanced by $A{\beta}$ were also downregulated by KHG26792 treatment. The effects of KHG26792 against the $A{\beta}-induced$ increases in inflammatory cytokine levels and oxidative stress were achieved by increasing the phosphorylation of $Akt/GSK-3{\beta}$ signaling and by decreasing the $A{\beta}-induced$ translocation of $NF-{\kappa}B$. Our results provide novel insights into the use of KHG26792 as a potential agent against $A{\beta}$ toxicity, including its role in the reduction of inflammation and oxidative stress. Nevertheless, further investigations of cellular signaling are required to clarify the in vivo effects of KHG26792 against $A{\beta}-induced$ toxicity.

Antioxidative Effect of Fermented Rhynchosia nulubilis in Obese Rats (비만 흰쥐에서 발효 서목태의 항산화 효과)

  • Bae, Gui-jeong;Ha, Bae-jin
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • This study was to examine the antioxidative activity of fermented Rhynchosia nulubilis (FRN) in obese rats. Oxidative stress due to reactive oxygen species (ROS) can cause oxidative damage to cells. Mitochondria are especially important in the oxidative stress as ROS have been found to be constantly generated as an endogen threat. Mitochondrial defense depends mainly on superoxide dismutase whereas microsomal defense depends on catalase, which is an enzyme abundant in microsomes. Seven weeks-aged female Sprague-Dawley rats were divided into four groups and fed high fat diets for 44 days. Also fermented Rhynchosia nulubilis was administered orally for 44 days at 7.5 ml/kg of body weight of rats. The antioxidative activities of fermented Rhynchosia nulubilis were measured by the superoxide dismutase, catalase, malondialdehyde levels in liver homogenate. The levels of malondialdehyde in FRN-treated groups were lower than those in obese groups. Superoxide dismutase and catalase levels were significantly increased. These results demonstrated that fermented Rhynchosia nulubilis had the inhibitive effects of oxidative stress in obese rats, suggesting that fermented Rhynchosia nulubilis would be used as an ingredient of the useful functional products.

Endogenous catalase delays high-fat diet-induced liver injury in mice

  • Piao, Lingjuan;Choi, Jiyeon;Kwon, Guideock;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and $PGC1{\alpha}$ mRNA expression were decreased in both CKO and WT mice at HFD feeding, $GSK3{\beta}$ phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

A new biomarker for the early diagnosis of ovarian torsion: SCUBE-1

  • Uyanikoglu, Hacer;Hilali, Nese Gul;Yardimciel, Mesut;Koyuncu, Ismail
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.2
    • /
    • pp.94-99
    • /
    • 2018
  • Objective: Prompt diagnosis and management are essential for saving the adnexal organs from infarction in cases of ovarian torsion (OT). This study aimed to determine the diagnostic significance of signal peptide, complement C1r/C1s, Uegf, and Bmp1 (CUB), and epidermal growth factor-like domain-containing protein-1 (SCUBE-1) levels in cases of OT, an emergent ischemic condition, and the relationship of SCUBE-1 with oxidative stress parameters. Methods: This prospective study was conducted among 15 OT patients and 20 age- and gravidity-matched healthy women. SCUBE-1 serum concentrations were determined by using enzyme-linked immunosorbent assays. In addition, oxidative stress was evaluated by measuring the serum levels of advanced oxidation protein products (AOPP), ferric reducing ability of plasma (FRAP), and glutathione (GSH). Results: The SCUBE-1 titers were significantly higher in the patients with OT than in the controls (p=0.008). In addition, serum FRAP and GSH levels were significantly lower in the OT patients than in the controls (p<0.001 for both). Serum AOPP levels were higher in the OT patients, but this trend was not statistically significant (p>0.05). Furthermore, there were no correlations between SCUBE-1 levels and age, gravidity, parity, cyst size, and AOPP, FRAP, or GSH levels (p>0.05). Conclusion: We believe that SCUBE-1 may be a promising biomarker for the early diagnosis of OT.

Biological functions of histidine-dipeptides and metabolic syndrome

  • Song, Byeng Chun;Joo, Nam-Seok;Aldini, Giancarlo;Yeum, Kyung-Jin
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.3-10
    • /
    • 2014
  • The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (${\beta}$-alanyl-L-histidine) and anserine (${\beta}$-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.