• Title/Summary/Keyword: oxidation polymerization

Search Result 80, Processing Time 0.031 seconds

Biodegradation of 4,5,6-Trichloroguaiacol by White Rot Fungi, Phanerochaete chrysosporium, Trametes versicolor, and Inonotus cuticularis (수질분해균(水質分解菌)에 의한 4,5,6-Trichloroguaiacol의 미생물분해(微生物分解))

  • Ahn, Sye-Hee;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • In order to evaluate the biodegradability and mechanism of 4,5,6-trichloroguaiacol (TCG) produced from bleaching process in pulp mill by Phanerochaete chrysosporium, Trametes versicolor, and Inonotus cuticularis, changes in TCG and its metabolites during biodegradation were analyzed by HPLC, and GC/MS spectrometry. By three fungi, the maximum biodegradability against TCG were very quickly reached, compared with other chlorinated aromatic compounds such as PCP. Within 24 hrs, T versicolor indicated up to 95% of TCG removal rate, and P. chrysosporium and I. cuticularis also showed more than 80%, and 90%, respectively. Particularly, in case of T. versicolor, the removal rate of TCG after 1 hr. incubation was reached to approximately 90%, implying very rapid metabolization of TCG. However, by analyzing the filtrates extracted from TCG containing culture by GC/MS, the major metabolites at initial stage of biodegradation were dimers, indicating that the added TCG monomers were quickly polymerized. The others were trichloroveratrole, dichloroguaiacol, and trichlorobenzoic acid, suggesting that TCG may be biodegraded by several sequential reactions such as polymerization, oxidation, methylation, dechlorination, and hydroxylation. In other experiments, the extracellular fluid which did not contain any fungal mycelia was used to evaluate the effect of mycelia on TCG biodegradation. The extracellular fluid of T. versicolor also biodegraded TCG up to 90% within 24hrs, but those of P. chrysosporium and I. cuticularis did not show any good biodegradability. T versicolor showed the highest value of laccase, and other two fungi indicated a little activity of lignin peroxidase (LiP) and manganese peroxidase (MnP). In addition, the laccase activity of T. versicolor was very linearly proportional to the removal rate of TCG during incubation, in other words, showing the induction effect against TCG. Consequently, the biodegradation of TCG was very dependent upon the activity of laccase.

  • PDF

Polymerization and Characterization of Polyesters Using Furan Monomers from Biomass (Biomass 유래 퓨란계 단량체를 이용한 폴리에스터의 중합 및 특성 연구)

  • Seo, Kang-Jin;Kim, Myeong-Jun;Jeong, Ji-Hea;Lee, Young-Chul;Noh, Si-Tae;Chung, Yong-Seog
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.526-530
    • /
    • 2011
  • Furan-2,5-dicarboxylic acid (FDCA) was synthesized by $KMnO_4$ oxidation of 2,5-dihydroxymethylfuran(DHMF) derived from biomass. Polyesters were synthesized by esterification and polycondensation of FDCA with various diols(ethane-1,2-diol, propane-1,3-diol, butane-1,4-diol, hexane-1,6-diol, decane-1,10-diol). The composition of polyesters was characterized by using $^1H$ NMR. Thermal properties of the polyesters were characterized by DSC and TGA. Intrinsic viscosities(IV) of the polyesters were measured to be 0.78~1.2 dL/g comparable with IV of commercial poly(ethylene terephthalate)(PET). As the chain lengths of diols increased, Young's modulus and strength decreased and elongation-to-break generally increased. Young's modulus and strength of the polyesters were measured to be 3551 MPa and 103 MPa, respectively, comparable with commercial PET.

Effect of Monomers and Initiators on Electrochemical Properties of Gel Polymer Electrolytes (젤 고분자 전해질의 전기화학적 특성에 대한 단량체 및 개시제의 영향)

  • Park, Hyoun-Gyu;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Poly(ethyleneglycol diacrylate)(PEGDA) or 2-ethylhexyl acrylate(2EHA)-based gel polymer electrolytes(GPEs) which have a solid content in the range of 8~54 wt% were synthesized and their ionic conductivity and electrochemical properties were measured at room temperature. It was observed that the ionic conductivity over $1\times10^{-3}$ S/cm was obtained in a homogeneous PEGDA-based GPE with 21 wt% of solid content. However the electrochemical stability of the GPE was lower than that of a liquid electrolyte. The presence of AIBN initiator which can produce a N2 gas during polymerization process might be the reason of this low oxidation decomposition potential. As an alternative, benzoyl peroxide was used as an initiator and GPE with enhanced electrochemical stability was obtained. Finally, the formation of stable solid electrolyte interphase on a graphite anode was evidenced by cyclic voltammetry measurement.

Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells

  • Meng, Ziyao;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.990-998
    • /
    • 2021
  • Melanin is a natural skin pigment produced by specialized cells called melanocytes via a multistage biochemical pathway known as melanogenesis, involving the oxidation and polymerization of tyrosine. Melanogenesis is initiated upon exposure to ultraviolet (UV) radiation, causing the skin to darken, which protects skin cells from UVB radiation damage. However, the abnormal accumulation of melanin may lead to the development of certain skin diseases, including skin cancer. In this study, the antioxidant and antimelanogenic activities of the cell-free supernatant (CFS) of twenty strains were evaluated. Based on the results of 60% 2,2-diphenyl-1-picrylhydrazyl scavenging activity, 21% 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) scavenging capacity, and a 50% ascorbic acid equivalent ferric reducing antioxidant power value, Limosilactobacillus fermentum JNU532 was selected as the strain with the highest antioxidant potential. No cytotoxicity was observed in cells treated with the CFS of L. fermentum JNU532. Tyrosinase activity was reduced by 16.7% in CFS-treated B16F10 cells (but not in the cell-free system), with >23.2% reduction in melanin content upon treatment with the L. fermentum JNU532-derived CFS. The inhibitory effect of the L. fermentum JNU532-derived CFS on B16F10 cell melanogenesis pathways was investigated using quantitative reverse transcription polymerase chain reaction and western blotting. The inhibitory effects of the L. fermentum JNU532-derived CFS were mediated by inhibiting the transcription of TYR, TRP-1, TRP-2, and MITF and the protein expression of TYR, TRP-1, TRP-2, and MITF. Therefore, L. fermentum JNU532 may be considered a potentially useful, natural depigmentation agent.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.

The Electrochemical Characterization of Conducting Polymer-Lignin Composite (전도성 고분자-리그닌 복합소재의 전기화학적 특성 분석)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.210-215
    • /
    • 2022
  • Two types of lignin materials with a different surface ionic character were used and polypyrrole layer was introduced on the lignin surface to obtain polypyrrole@lignin and polypyrrole@lignosulfonate composites using a simple chemical oxidation polymerization, reported in a previous article. Polypyrrole was effectively prepared regardless of the lignin type and the resulting composites were investigated using scanning electron microscope (SEM), cyclic voltammetry (CV), and impedance analysis. SEM and CV results showed that the obtained composites retained stable electrochemical properties after introduction of polypyrrole on the lignin surface. Impedance analyses showed that the surface properties of composites were dependent on lignin characteristics. In addition, the composites were embedded in agarose, an gelifying agent, to obtain conductive gels. It was found that the conductive gels possessed an electrical conductivity and also retained stable electrochemical properties, which indicated that the conductive gels might be useful for some applications.

Physicochemical Properties and Gel Forming Properties of Mungbean and Buckwheat Crude Starches (녹두와 메밀 조전분의 이화학적 특성 및 겔 형성)

  • 주난영;이혜수
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 1989
  • The physicochemical properties and gel forming properties of mungbean and buckwheat crude starches were investigated. The results were as follows; 1. The granule size and shape of mungbean crude starch were $11~32\mu\textrm{m}$ and oval, and those of buckwheat crude starch were $3~10 \mu\textrm{m}$ and polygonal. 2. The amylose conteut of mungbean crude starch and buckwheat crude starch were 78.0% and 26.4% respectively. 3. The blue value of mungbean crude starch and buckwheat crude starch were 1.030 and 0.409, respectively. 4. Periodate oxidation of mungbean crude starch resulted that amylose had the average molecular weight of 95, 648, degree of polymerization of 590 and amylopectin had the degree of branching of 5.4, glucose unit per segment of 18.6, and periodate oxidation of buckwheat crude starch resulted that amylose had the average molecular weight of 133, 690, degree of polymerization of 825 and amylopectin had the degree of branching of 5.2, glucose unit per segment of 19.2 5. Water binding capacity of mungbean crude starch was 185.1% and that of buckwheat was 209.9% 6. The pattern of change in swelling power of mungbean crude starch for increasing temperature started to increase at $60^{\circ}C$ and increased rapidly from $70^{\circ}C$, and that of buckwheat increased slowly from $60^{\circ}C$ to $90^{\circ}C$ without rapid increase. 7 The ranges of gelatinization temp. of mungbean and buckwheat crude starches were 63. 9-$109^{\circ}C$ and 52.5-84.$2^{\circ}C$, respectively. 8. The gelatinization patterns for 6% munbean crude starch and 8% buckwheat crude starch were investigated by Brabender amglograph. Mungbean crude starch showed the initial pasting temperature of 77.6$^{\circ}C$ without peak height, and buckwheat crude starch showed that of $62.5^{\circ}C$ without peak height. In addition, sensory evaluation for sample starch gels (mungbean, buckwheat, cowpea) was done. 1. The difference of sensory characteristics for each starch gel was significant. 2. The sample starch gels were regarded as 'Mook' by pannels. 3. 74.44% of the degree of Mooklike was explained by hardness.

  • PDF

Gelation Properties and Industrial Application of Functional Protein from Fish Muscle-1. Effect of pH on Chemical Bonds during Thermal Denaturation (기능성 어육단백질의 젤화 특성과 산업적 응용-1. 가열변성 중 화학결합에 미치는 pH의 영향)

  • Jung, Chun-Hee;Kim, Jin-Soo;Jin, Sang-Keun;Kim, Il-Suk;Jung, Kyoo-Jin;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1668-1675
    • /
    • 2004
  • The effect of pH on surface hydrophobicity, sulfhydryl group, infrared spectrum, SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) pattern and enthalpy was investigated in recovered protein from mackerel and frozen blackspotted croaker by alkaline processing. Hydrophobic residue in myofibrillar protein exposed to the surface of protein, and hydrophobic interaction were the highest around 6$0^{\circ}C$. The surface hydrophobicity was different between myofibrillar protein and myofibrillar protein including sarcoplasmic protein (recovered protein). The peak at 1636 c $m^{-l}$ was increased with pH, and the recovered protein was unfolded in alkali pH. Difference of surface and total sulfhydryl group at pH 7.0 and 10 was comparative high, and decrease of surface sulfhydryl group indicated formation of S-S bonds. Mackerel and frozen blackspotted croaker in alkaline pH showed bands of polymerized myosin heavy chain on SDS-PAGE pattern. The transition temperatures of recovered protein were 33.1, 44.3 and 65.5$^{\circ}C$. Gelation of recovered protein from alkali processing was estimated by increase of $\beta$-sheet structure by pH treatment, S-S bonds by oxidation of surface sulfhydryl group in heating, polymerization of myosin heavy chain in order.r.

Physicochemical Properties of Cowpea Crude and Refined Starch (동부 조전분 및 정제전분의 이화학적 특성)

  • 윤혜현;이혜수
    • Korean journal of food and cookery science
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 1987
  • The purpose of this study is to investigate the physicochemcal Properties of the cowpea crude and refined starch and to present the basic data for physicochemical factor which gives the properties of Mook to cowpea starch gel. Water binding capacity of crude starch was 235. In and that of refined starch was 186.0%. The pattern of change in swelling power and solubility for increasing temperature started to increase at $60^{\circ}C$ and increased rapidly from $70^{\circ}C$, for both of crude and refined starch. The optical transmittance of 0.2% crude and refined starch suspensions were increased from $65^{\circ}C$ and showed rapid increasement during 68~$80^{\circ}C$, and their curves showed two-stage processes. The gelatinization pattern for 6n crude and refined starch suspensions were investigated by the Brabender amylograph. The corves showed the pasting temperature of $72.0^{\circ}C$ and $72.1^{\circ}C$, peak height of 11303.U. ($88.0^{\circ}C$) and 970 B.U. ($83.5^{\circ}C$) for crude and refined starch, respectively, and both showed high viscosities when cooling. Blue values for crude and refined starch were 0.369 and 0.376 respectively. Alkali number of crude and refined starch were 7.77 and 7.34, and reducing values were 3.60 and 2. 10, respectively. Amylose content of cowpea starch was 33.7%. Periodate oxidation of the starch fractions resulted that amylose had the average molecular weight of 23590, degree of polymerization of 146 and amylopectin had the degree of branching of 3.42, glucose unit per segment of 29.

  • PDF

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor (유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.233-237
    • /
    • 2024
  • This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry (CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific surface area.