DOI QR코드

DOI QR Code

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor

유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용

  • Min-Jung Song (Department of Nano Convergence Engineering, Seokyeong University)
  • 송민정 (서경대학교 나노융합공학과)
  • Received : 2024.05.17
  • Accepted : 2024.07.08
  • Published : 2024.08.01

Abstract

This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry (CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific surface area.

본 연구는 유/무기 나노복합체를 이용한 PAN계 탄소섬유 토우(PAN-based carbon fibers tow) 기반의 유연 전극 제작 및 이를 활용한 비효소 전기화학 센서 개발에 대한 것으로, 전도성 고분자 polyaniline (PANI)와 금속 산화물 CuO을 유/무기 나노복합체 소재로 사용하였으며 글루코스를 전기화학 센서 타겟으로 적용하였다. 전극 제작을 위해 시판된 CFT는 열처리를 통한 사이징(sizing) 제거와 전기화학적 산화에 의한 표면 활성화의 전처리 공정을 거쳐 사용되었다. 유/무기 나노복합체는 전기화학적 중합 및 증착법을 통해 전처리된 CFT 표면 위에 순차적으로 합성되어 최종 CFT/PANI/CuO NPs 전극이 제작되었다. CFT/PANI/CuO NPs 전극의 전기화학적 특성 및 센싱 성능은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분광법을 이용하여 분석되었다. CFT/PANI/CuO NPs 전극은 전도성 고분자과 금속 산화물의 접목에 의해 전기 전도도 향상 및 우수한 전자 전달, 감응시간 단축, 비표면적 증가 등 개선된 전기화학적 특성과 증가된 감도, 넓은 선형 농도 구간, 높은 선택도 등 향상된 글루코스 센싱 성능을 보였다.

Keywords

Acknowledgement

본 연구는 2024년도 서경대학교 교내연구비 지원에 의하여 이루어졌음.

References

  1. Mulvihill, D. M., Smerdova, O. and Sutcliffe, M. P. F., "Friction of Carbon Fibre Tows," Compos. Pt. A- Appl. Sci. Manuf., 93, 185-198(2017).  https://doi.org/10.1016/j.compositesa.2016.08.034
  2. Ghanbari, K. and Babaei, Z., "Fabrication and Characterization of Non-enzymatic Glucose Sensor Based on Ternary NiO/CuO/polyaniline Nanocomposite," Anal. Biochem., 498, 37-46(2016).  https://doi.org/10.1016/j.ab.2016.01.006
  3. Gholivand, M. B., Heydari, H., Abdolmaleki, A. and Hosseini, H., "Nanostructured CuO/PANI Composite as Supercapacitor Electrode Material," Mat. Sci. Semicond. Process., 30, 157-161 (2015).  https://doi.org/10.1016/j.mssp.2014.09.047
  4. Song, M. J., "Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode," Korean Chem. Eng. Res., 62, 1-6(2024). 
  5. Torz-Piotrowska, R., Wrzyszczynski, A., Paprocki, K., Szreiber, M., Uniszkiewicz, C. and Staryga, E., "The Application of CVD Diamond Films in Cyclic Voltammetry," J. Achiev. Mater. Manuf. Eng., 37, 486-491(2009). 
  6. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao, V. K. and Vijayaraghavan, R., "Immobilization of Acetylcholinesterase-choline Oxidase on a Gold-platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents," Biosens. Bioelectron., 25, 832-838(2009).  https://doi.org/10.1016/j.bios.2009.08.036
  7. Misak, H. E., Asmatulu, R. A., O'Malley, M., Jurak, E. and Mall, S., "Functionalization of Carbon Nanotube Yarn by Acid Treatment," Int. J. Smart Nano Mater., 5, 34-43(2014).  https://doi.org/10.1080/19475411.2014.896426
  8. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N., "Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its Electrochemical Detection of Glucose," J. Electrochem. Soc., 162, H392-H396(2015).  https://doi.org/10.1149/2.0881506jes
  9. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York (1980). 
  10. Song, M. J., "Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-doped Diamond for Detection of Glucose," Korean Chem. Eng. Res., 57, 606-610(2019).  https://doi.org/10.9713/KCER.2019.57.5.606
  11. Yang, J., Jiang, L. C., Zhang, W. D. and Gunasekaran, S., "A Highly Sensitive Non-enzymatic Glucose Sensor Based on a Simple Two-step Electrodeposition of Cupric Oxide (CuO) Nanoparticles Onto Multi-walled Carbon Nanotube Arrays," Talanta, 82, 25-33(2010).  https://doi.org/10.1016/j.talanta.2010.03.047
  12. Song, M. J., "Electrochemical Sensor for Non-enzymatic Glucose Detection Based on Flexible CNT Fiber Electrode Dispersed with CuO Nanoparticles," Korean Chem. Eng. Res., 61, 52-57(2023). https://doi.org/10.9713/KCER.2023.61.1.52