DOI QR코드

DOI QR Code

The Electrochemical Characterization of Conducting Polymer-Lignin Composite

전도성 고분자-리그닌 복합소재의 전기화학적 특성 분석

  • Bae, Joonwon (Department of Applied Chemistry, Dongduk Women's University)
  • 배준원 (동덕여자대학교 응용화학과)
  • Received : 2022.03.13
  • Accepted : 2022.03.30
  • Published : 2022.04.10

Abstract

Two types of lignin materials with a different surface ionic character were used and polypyrrole layer was introduced on the lignin surface to obtain polypyrrole@lignin and polypyrrole@lignosulfonate composites using a simple chemical oxidation polymerization, reported in a previous article. Polypyrrole was effectively prepared regardless of the lignin type and the resulting composites were investigated using scanning electron microscope (SEM), cyclic voltammetry (CV), and impedance analysis. SEM and CV results showed that the obtained composites retained stable electrochemical properties after introduction of polypyrrole on the lignin surface. Impedance analyses showed that the surface properties of composites were dependent on lignin characteristics. In addition, the composites were embedded in agarose, an gelifying agent, to obtain conductive gels. It was found that the conductive gels possessed an electrical conductivity and also retained stable electrochemical properties, which indicated that the conductive gels might be useful for some applications.

표면의 전하 특성이 다른 두 가지 리그닌을 사용하여 이전 연구에서 제시된 간단한 방법인 용액상 화학적 중합을 이용하여 폴리피롤@리그닌(PPy@lignin) 및 폴리피롤@리그노설포네이트(PPy@lignosulfonate) 복합소재를 제조하였다. 폴리피롤은 두 가지 리그닌 표면에서 각각 성공적으로 중합되었으며, 얻어진 복합소재들은 주사전자현미경, 순환전압 전류법, 임피던스(impedance) 분석법 등을 이용하여 분석하였다. 이러한 결과들을 바탕으로, 리그닌의 종류가 달라도 복합재료들은 성공적으로 제조되는 것을 알 수 있었으며, 전기적 특성도 일정하게 유지되는 것으로 나타났다. 다만, 개별 리그닌의 표면 특성 차이로 나타나는 물성 차이가 존재함을 임피던스 분석으로 판단할 수 있었다. 나아가, 두 가지 복합소재들을 아가로즈(agarose) 젤(gel)에 투입하여 전도성 젤을 형성하고 이 젤들의 특성들을 역시 순환전압전류법으로 살펴보았으며, 전기전도도를 측정하여 제시하였다. 리그닌의 전기절연성에도 불구하고 전도성 젤이 전기전도도를 포함한 전기적 특성을 유지하는 것을 알 수 있었다. 이는 전도성 젤의 활용이 가능하다는 점을 의미한다.

Keywords

Acknowledgement

이 연구는 동덕여자대학교의 연구 지원으로 수행되었습니다. (2021년)

References

  1. V. K. Thakur, M. K. Thakur, P. Raghavan, and M. R. Kessler, Progress in green polymer composites from lignin for multifunctional applications: A review, ACS Sustain. Chem. Eng., 2, 1072-1092 (2014). https://doi.org/10.1021/sc500087z
  2. Q. Fu, Y. Chen, and M. Sorieul, Wood-based flexible electronics, ACS Nano, 24, 3528-3538 (2020).
  3. D. Liang, X. Zhu, P. Dai, X. Lu, H. Guo, H. Que, D. Wang, T. He, C. Xu, H. M. Robin, Z. Luo, and X. Gu, Preparation of a novel lignin-based flame retardant for epoxy resin, Mater. Chem. Phys., 259, 124101 (2021). https://doi.org/10.1016/j.matchemphys.2020.124101
  4. S. Mohammadalinejhad, H. Almasi, M. Esmaiili, Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan, and lignocellulose nanofiber composite films, Mater. Chem. Phys., 268, 124719 (2021). https://doi.org/10.1016/j.matchemphys.2021.124719
  5. J. Bae, K. Shin, O. S. Kwon, Y. Hwang, J. An, A. Jang, H. J. Kim, and C.-S. Lee, A succinct review of refined chemical sensor systems based on conducting polymer-cyclodextrin hybrids, J. Ind. Eng. Chem., 79, 19-28 (2019). https://doi.org/10.1016/j.jiec.2019.06.051
  6. F. N. Ajjan, M. J. Jafari, T. Rebis, T. Ederth, and O. Inganas, Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material, J. Mater. Chem. A, 3, 12927-12937 (2015). https://doi.org/10.1039/C5TA00788G
  7. T. Rebis and G. Milczarek, A comparative study on the preparation of redox active bioorganic thin films based on lignosulfonate and conducting polymers, Electrochim. Acta, 204, 108-117 (2016). https://doi.org/10.1016/j.electacta.2016.04.061
  8. T. Rebis, M. Sobkowiak, and G. Milczarek, Electrocatalytic oxidation and detection of hydrazine at conducting polymer/lignosulfonate composite modified electrodes, J. Electroanal. Chem., 780, 257-263 (2016). https://doi.org/10.1016/j.jelechem.2016.09.030
  9. S. Y. Park, S. Park, H. J. Kim, Y. Im, and J. Bae, Preparation of Hydrogels Containing Polypyrrole@lignin Hybrids and Application in Sensors, Appl. Chem. Eng., 31, 411-415 (2020). https://doi.org/10.14478/ACE.2020.1046
  10. Y. Hwang, J. Y. Park, O. S. Kwon, S. Joo, C.-S. Lee, and J. Bae, Incorporation of hydrogel as a sensing medium for recycle of sensing material in chemical sensors, Appl. Surf. Sci., 429, 258-263 (2018). https://doi.org/10.1016/j.apsusc.2017.06.243
  11. P. Bober, N. Gavrilov, A. Kovalcik, J. Micusik, C. Unterweger, I. A. Pasti, I. Sedenkova, U. Acharya, J. Pfleger, S. K. Filippov, J. Kulicek, M. Omastova, S. Breitenbach, G. Ciric-Marjanovic, and J. Stejskal, Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues, Mater. Chem. Phys., 213, 352-361 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.043