Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. NRF-2021R1F1A1063320).
References
- G. A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S. F. Abera, G. Abyu, M. Ahmed, B. Aksut, T. Alam, and K. Alam, Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015, J. Am. Coll. Cardiol., 70, 1-25 (2017). https://doi.org/10.1016/j.jacc.2017.04.052
- A. J. Lusis, Atherosclerosis, Nature, 407, 233-241 (2000). https://doi.org/10.1038/35025203
- E.-J. Jang, S.-Y. Lee, I.-H. Bae, D. S. Park, M. H. Jeong, and J.-K. Park, Fabrication and evaluation of polyelectrolyte complexes of dextran derivatives for drug coating of coronary stents, Appl. Chem. Eng., 30, 586-590 (2019). https://doi.org/10.14478/ACE.2019.1057
- R. Ross, J. Glomset, and L. Harker, Response to injury and atherogenesis, Am. J. Pathol, 86, 675-84 (1977).
- R. Kornowski, M. K. Hong, F. O. Tio, O. Bramwell, H. Wu, and M. B. Leon, In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia, J. Am. Coll. Cardiol., 31, 224-230 (1998).
- G. W. Stone, S. G. Ellis, D. A. Cox, J. Hermiller, C. O'Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, and J. Greenberg, A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease, N. Engl. J. Med., 350, 221-231 (2004). https://doi.org/10.1056/nejmoa032441
- J. W. Moses, M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O'Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, and P. S. Teirstein, Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery, N. Engl. J. Med., 349, 1315-1323 (2003). https://doi.org/10.1056/NEJMoa035071
- E. Lih, C. H. Kum, W. Park, S. Y. Chun, Y. Cho, Y. K. Joung, K.-S. Park, Y. J. Hong, D. J. Ahn, and B.-S. Kim, Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to biodegradable poly (lactide-co-glycolide) implants, ACS Nano, 12, 6917-6925 (2018). https://doi.org/10.1021/acsnano.8b02365
- G. Acharya, and K. Park, Mechanisms of controlled drug release from drug-eluting stents, Adv. Drug Deliv. Rev., 58, 387-401 (2006). https://doi.org/10.1016/j.addr.2006.01.016
- B. Oh, and C. H. Lee, Advanced cardiovascular stent coated with nanofiber, Mol. Pharm., 10, 4432-4442 (2013). https://doi.org/10.1021/mp400231p
- D. Kersani, J. Mougin, M. Lopez, S. Degoutin, N. Tabary, F. Cazaux, L. Janus, M. Maton, F. Chai, and J. Sobocinski, Stent coating by electrospinning with chitosan/poly-cyclodextrin based nanofibers loaded with simvastatin for restenosis prevention, Eur. J. Pharm. Biopharm., 150, 156-167 (2020). https://doi.org/10.1016/j.ejpb.2019.12.017
- B. Wang, J. Hua, R. You, K. Yan, and L. Ma, Electrochemically deposition of catechol-chitosan hydrogel coating on coronary stent with robust copper ions immobilization capability and improved interfacial biological activity, Int. J. Biol. Macromol., 181, 435-443 (2021). https://doi.org/10.1016/j.ijbiomac.2021.03.158
- H. Lee, N. F. Scherer, and P. B. Messersmith, Single-molecule mechanics of mussel adhesion, Proc. Natl. Acad. Sci. U.S.A., 103, 12999-13003 (2006). https://doi.org/10.1073/pnas.0605552103
- L. Li, and H. Zeng, Marine mussel adhesion and bio-inspired wet adhesives, Biotribology, 5, 44-51 (2016). https://doi.org/10.1016/j.biotri.2015.09.004
- S. Park, S. Kim, Y. Jho, and D. S. Hwang, Cation-π interactions and their contribution to mussel underwater adhesion studied using a surface forces apparatus: a mini-review, Langmuir, 35, 16002-16012 (2019). https://doi.org/10.1021/acs.langmuir.9b01976
- J. Wu, L. Zhang, Y. Wang, Y. Long, H. Gao, X. Zhang, N. Zhao, Y. Cai, and J. Xu, Mussel-inspired chemistry for robust and surface-modifiable multilayer films, Langmuir, 27, 13684-13691 (2011). https://doi.org/10.1021/la2027237
- H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318, 426-430 (2007). https://doi.org/10.1126/science.1147241
- J. Necas, L. Bartosikova, P. Brauner, and J. Kolar, Hyaluronic acid (hyaluronan): A review, Veterinarni Medicina, 53, 397-411 (2008). https://doi.org/10.17221/1930-VETMED
- K. Meyer, The biological significance of hyaluronic acid and hyaluronidase, Physiol. Rev., 27, 335-359 (1947). https://doi.org/10.1152/physrev.1947.27.3.335
- B. Sadowitz, K. Seymour, V. Gahtan, and K. G. Maier, The role of hyaluronic acid in atherosclerosis and intimal hyperplasia, J. Surg. Res., 173, e63-e72 (2012).
- J. Shin, J. S. Lee, C. Lee, H. J. Park, K. Yang, Y. ,Jin, J. H. Ryu, K. S. Hong, S. H. Moon, and H. M. Chung, Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy, Adv. Funct. Mater., 25, 3814-3824 (2015). https://doi.org/10.1002/adfm.201500006
- S. Hong, K. Yang, B. Kang, C. Lee, I. T. Song, E. Byun, K. I. Park, S. W. Cho, and H. Lee, Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering, Adv. Funct. Mater., 23, 1774-1780 (2013). https://doi.org/10.1002/adfm.201202365
- Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure, Vib. Spectrosc., 62, 110-114 (2012). https://doi.org/10.1016/j.vibspec.2012.05.007