• Title/Summary/Keyword: oxidation behavior

Search Result 758, Processing Time 0.028 seconds

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction (광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향)

  • Kang Min-Ju;Lee Pyeong-Koo;Kim Sang-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.23-36
    • /
    • 2006
  • Experimental leaching of tailings was performed as a function of times (1, 2, 4, 7, 14, 21 and 30 days) in the laboratory using reaction solutions equilibrated to three different pH set-points (pHs 1,3 and 5). The initial pHs of 5 and 3 stabilized at either 4.6-6.1 or 2.8-3.5 in 2 days and decrease gradually with time afterwards. The results of the leaching tests indicate that the significant increase in the sulfate concentrations and in acidity after 7 days of leaching results from the oxidation of sulfide minerals. There were no significant variations in the extractable Pb found in the leach solutions of pH 5 and 3 within the reaction time (1-30 days), while Zn, Cd and Cu concentrations tend to significantly increase with time. In tailings leaching at an initial pH=1, two trends were observed: i) The 'Zn-type' (Zn, Cd and Cu), with increasing concentrations between days 1 and 30, corresponding to the expected trend when continuous dissolution is the dominant process, ii) the 'Pb-type' (Pb), with decreasing concentrations over time, suggesting rapid dissolution of a Pb source followed by the precipitation of 'anglesite' in relation to the large increase in dissolved sulfates. The high sulfate concentrations were coupled with high concentrations of released Fe, Zn and Cd. Release of Zn and Cd and acidity from these leaching experiments can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment. The kinetic problems could be the important factor which leads to increasing concentrations of trace metals in the runoff water.

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

Wear Characteristics According of Heat Treatment of Si3N4 with Different Amounts of SiO2 Nano-Colloid (SiO2 나노 콜로이드 량이 다른 Si3N4의 열처리에 따른 마모 특성)

  • Ahn, Seok Hwan;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1117-1123
    • /
    • 2014
  • This study sintered $Si_3N_4$ with different amounts of $SiO_2$ nano-colloid. The surface of a mirror-polished specimen was coated with $SiO_2$ nano-colloid, and cracks were healed when the specimen was treated at a temperature of 1273 K for 1 h in air. Wear specimen experiments were conducted after heat treatments for 10 min at 1073, 1273, and 1573 K. The heat-treated surface that was coated with the $SiO_2$ nano-colloid was slightly rougher than the noncoated surface. The oxidation state of the surface according to the heat treatment temperature showed no correlation with the surface roughness. Moreover, the friction coefficient, wear loss, and bending strength were not related to the surface roughness. $Si_3N_4$ exhibited an abrasive wear behavior when SKD11 was used as an opponent material. The friction coefficient was proportional to the wear loss, and the bending strength was inversely proportional to the friction coefficient and wear loss. The friction coefficient and wear loss increased with increasing amounts of the $SiO_2$ nanocolloid. In addition, the friction coefficient was slightly increased by increasing the heat treatment temperature.

Distributions and Behaviors of H2O2 Above the Yellow Sea in the Years Between 2002 and 2004 (2002년에서 2004년 동안 서해상공에서 관측된 과산화수소의 농도분포 및 거동)

  • Kim Y.M.;Shin S.A.;Han J.S.;Lee M.H.;Kim J.A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.689-697
    • /
    • 2005
  • Hydrogen peroxide is a reservoir of OH radical which is the powerful oxidant in the atmosphere. Therefore, the status of the oxidizing atmosphere could be reflected on the concentration of $H_{2}O_{2}$. In this study, the distribution of $H_{2}O_{2}$ was determined during the intensive aircraft measurements over the Yellow sea in March, December 2002, April, November 2003 and March, October 2004. Flights covered from $124^{circ}E\;to\;129^{circ}E\;and\;35^{circ}N\;to\;37^{circ}N$, and extending to 3,000 m. The flight patterns were set properly to assess the altitudinal and longitudinal distribution for $H_{2}O_{2}$. $H_{2}O_{2}$ was extracted onto aqueous solution using a continuously flowing glass coil and analyzed by a high performance liquid chromatography (HPLC) accompanied with a fluorescence detector using postcolumn enzyme derivatization. Mixing ratios of $O_{3},\;NO_{x}\;and\;SO_{2}$ were measured in real time by commercial analysis instruments. Along the heights, the maximum concentration of $H_{2}O_{2}$ appeared around 1,500 m then gradually decreased with increasing altitude. The vertical behavior of ozone showed the similar trend to $H_{2}O_{2}$. The mean mixing ratio of $NO_{x}$ was about 2 ppbv and not showed clear vertical distribution patterns. The mean value of was the same as $NO_{x}$ however $SO_{2}$ appeared extreme concentration in low altitude. $H_{2}O_{2}\;and\;O_{3}$ showed even longitudinal distribution however $NO_{x}$ mixing ratio in land ($127^{circ}E$) was much higher than over the sea. $SO_{2}$ rather decreased with increasing longitude. $H_{2}O_{2}$ was in inverse proportion to $NO_{x}$ in spring and summer and $SO_{2}$ in spring, which indicated its significant role to NO and $SO_{2}$ oxidation pathways.

Effect of Ethanol on the Reduction of Propionate under Anaerobic Condition (혐기성 조건에서 에탄올의 주입에 따른 프로피온산의 저감에 관한 연구)

  • Hyun, Seung-Hoon;Kim, Do-Hee;Park, Soo-Jin;Hwang, Moon-Hyun;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1869-1879
    • /
    • 2000
  • A series of experiments were conducted for modeling the fate and effect of the coupled oxidation reduction reaction of ethanol and propionate recognized as important intermediates in anaerobic degradation metabolism. Anaerobic kinetics for conversion of propionate and the interaction with ethanol were investigated using the model of specific substrate priority utilization effect. Seed cultures for the experiment were obtained from an anaerobically enriched steady-state propionate master culture reactor (HPr-MCR), ethanol-propionate master culture reactor (EtPr-MCR) and glucose master culture reactor (Glu-MCR). Experiments were consisted of four phases. Phase I, II and III were conducted by fixing the propionate organic loading as 1.0 g COD/L with increasing ethanol loading of 0, 100, 200, 400 and 1,000 mg/L, to find metabolic interaction of ethanol and propionate degradation by each enriched anaerobic culture. In phase IV, different mixing ratios of Glu-MCR and HPr-MCR cultures with fixed propionate organic loading, 1.0 g COD/L, were applied to observe the propionate degradation metabolic behavior. In the results of this study, different pathways of propionate and ethanol conversion were found using a modified competitive inhibition kinetic model. Increase of $K_{s2}$ value reflected the formation of acetate followed by ethanol degradation. In addition. $K_3$ value was increased slightly as the reactions of acetate formation and degradation were occurred in acetoclastic methanogenesis.

  • PDF

Electrochemical Behavior of a Nickel Hydroxide Particle for Ni-MH Battery by Microelectrode (마이크로전극에 의한 니켈수소전지용 수산화니켈 입자의 전기화학적 거동)

  • Kim, Ho-Sung;Oh, Ik-Hyun;Lee, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.145-149
    • /
    • 2007
  • Electrochemical studies were performed for a single particle of nickel hydroxide for the cathode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and electrochemical experiments were performed. As a result of cyclic voltammetry, the oxidation/reduction and oxygen evolution reaction (OER) are clearly separated for a single particle. The total cathodic charge (Qred) is practically constant for the scan rate investigated, indicating that the whole particle has reacted. The total anodic charge(Qox) was larger than that of reduction reaction, and the magnitude of oxygen evolution taking place as a side reaction was enhanced at lower scan rates. As a result of galvanostatic charge and discharge measurement, the discharge capacity of single particle was found to be 250 mAh/g, value being very close to the theoretical capacity (289 mAh/g). The apparent proton diffusion coefficient(Dapp) using potential step method inside the nickel hydroxide was found to range within $3{\sim}4{\times}10^{-9}\;cm^2/s$.

Electrode Fabrication and Electrochemical Characterization of a Sealed Ni-MH Battery for Industrial Use (산업용 밀폐형 니켈수소전지의 전극 제조 및 전기화학적 특성)

  • An, Yang-Im;Kim, Sae-Hwan;Jo, Jin-Hun;Kim, Ho-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.289-296
    • /
    • 2008
  • Electrochemical studies were performed by a half-cell test for the nickel hydroxide (cathode) and hydrogen storage alloy(anode) electrodes for the sealed Ni-MH batteries applicable to industrial use. The electrodes were fabricated and checked a charge efficiency and an internal pressure of the battery during charge-discharge cycling. In order to reduce the internal pressure of the sealed Ni-MH battery, cyclic voltammetry (CV) were performed on the electrodes of nickel hydroxide(cathode) and hydrogen storage alloy(anode), respectively. The results of the test showed clearly the oxidation/reduction and oxygen evolution reaction in a nickel hydroxide electrode and the hydrogenation behavior of a hydrogen storage electrode. The sealed Ni-MH battery of 130Ah was fabricated by using nickel hydroxide of a high over-voltage for an oxygen gas evolution and hydrogen storage alloy of a good performance for activation The battery showed a good characteristics such as a high charge efficiency of 98% at 1 C charge current, a low level internal pressure of 4 atm on a continuous over-charging and a large preservation capacity of 95% at 400 cycle.

Thermal Stability of CaMgSi2O6:Eu2+ Phosphor by EPR Measurement (EPR 측정에 의한 CaMgSi2O6:Eu2+ 형광체의 열적 안정성 연구)

  • Heo, Kyoung-Chan;Kim, Yong-Il;Ryu, Kwon-Sang;Moon, Byung-Kee
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.246-249
    • /
    • 2005
  • The blue-color emitting phosphor powder, $CaMgSi_{2}O_6:Eu^{2+}(CMS:Eu^{2+})$ was synthesized by the solid-state reaction method. The synthesized powder was annealed from room temperature to $1,100^{\circ}C$ in air. Its PL property and valence state of Eu atoms was measured by the photoluminescence (PL) and the electron paramagnetic resonance (EPR) spectrometers, respectively. The PL intensity was stable to $700^{\circ}C$, but drastically decreased to $1,100^{\circ}C$. The behavior of EPR intensity was very similar to the PL intensity. The EPR measurement showed that decreased intensity of the PL was caused to the oxidation from the ion $Eu^{2+}$ to $Eu^{3+}$ ions. The EPR spectrometer was powerful as a tool that could distinguish between the valence states of Eu atom as a dopant in various phosphors.