DOI QR코드

DOI QR Code

Electrochemical Behavior of a Nickel Hydroxide Particle for Ni-MH Battery by Microelectrode

마이크로전극에 의한 니켈수소전지용 수산화니켈 입자의 전기화학적 거동

  • Kim, Ho-Sung (Gwangju Research Center, Korea Institute of Industrial Technology) ;
  • Oh, Ik-Hyun (Gwangju Research Center, Korea Institute of Industrial Technology) ;
  • Lee, Jong-Ho (Gwangju Research Center, Korea Institute of Industrial Technology)
  • 김호성 (한국생산기술연구원 광주연구센터) ;
  • 오익현 (한국생산기술연구원 광주연구센터) ;
  • 이종호 (한국생산기술연구원 광주연구센터)
  • Published : 2007.05.28

Abstract

Electrochemical studies were performed for a single particle of nickel hydroxide for the cathode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and electrochemical experiments were performed. As a result of cyclic voltammetry, the oxidation/reduction and oxygen evolution reaction (OER) are clearly separated for a single particle. The total cathodic charge (Qred) is practically constant for the scan rate investigated, indicating that the whole particle has reacted. The total anodic charge(Qox) was larger than that of reduction reaction, and the magnitude of oxygen evolution taking place as a side reaction was enhanced at lower scan rates. As a result of galvanostatic charge and discharge measurement, the discharge capacity of single particle was found to be 250 mAh/g, value being very close to the theoretical capacity (289 mAh/g). The apparent proton diffusion coefficient(Dapp) using potential step method inside the nickel hydroxide was found to range within $3{\sim}4{\times}10^{-9}\;cm^2/s$.

본 논문은 마이크로전극 측정시스템을 사용하여 니켈수소전지의 전극 소재로 사용되고 있는 수산화니켈의 단일 입자에 대해 전기화학적 평가를 수행 하였다. 즉 Carbon fiber 마이크로전극을 수산화니켈 입자 한개 위에 전기적인 접촉을 이루도록 조정하고 전기화학적 평가를 수행하였다. Cyclic Voltammetry 실험 결과 수산화니켈의 산화 환원 반응과 산소 발생 반응(OER)이 명확하게 분리 되고 있음을 확인하였으며, 전위주사속도를 증가 시킬 경우 환원 전하량은 주사 속도에 의존하지 않고 거의 일정한 수치를 보여 주고 있으나, 산화 전하량은 환원 전하량 보다 크고 주사속도 구간에서 부반응인 산소발생이 증가하고 있음을 확인했다. 그리고 Calvanostat에 의한 정전류 충방전 실험의 결과 수산화니켈 단일 입자의 방전용량은 이론용량 289 mAh/g에 근접한 수치(약 250 mAh/g)를 보여 주었으며 또한 Potential Step에 의해 단일 입자내의 수소이온 확산계수($D_{app}=3{\sim}4{\times}10^{-9}\;cm^2/s$)가 얻어졌다.

Keywords

References

  1. Oshitani M, Watada M, Lida T, Hydrogen and Metal Hydride Batteries. In: bennett PD, Sakai T, editors. The Electrochemical Society Proceedings Series, Pennington, NJ, PV 94-27, p.302 (1994)
  2. Oshitani M, Yufu H, Takashima K, Tsuji S, Matsumaru Y, J. Electrochem Soc (1989) 136;1590 https://doi.org/10.1149/1.2096974
  3. Murata K, Oshitani M, EVT 95 Conference Proceedings, Paris, 1995, p.194
  4. Watada M, Ohnishi M, Harada Y, Oshitani M, Proceedings of the 34th International Power Sources Symposium, vol. 413, New York: IEEE, 1990, p.299
  5. Oshitani M, Watada M, Yufu H, Matsumaru Y, Denki Kagaku [Electrochemistry] 1989;57:480
  6. Armstrong RD, Sood AK, Moore M, J. Appl. Electrochem 1985;15:603 https://doi.org/10.1007/BF01059302
  7. Sasaki Y, Takashima K, Oshitani M, J. Power Source 1984;12:219 https://doi.org/10.1016/0378-7753(84)80021-X
  8. Kodama M, Kuzuhara M, Yu CF, Shodai K, Ito T, Watada M, Oshitani M, Proceedings of the 40th Battery Symposium, Japan, 1999, p.115
  9. Satoguchi K, nakahori S, Nogami M, Yano M, Tokuda M, Higashiyama N, Kimoto M, Proceedings of the 39th Battery Symposium, Japan, 1998, p.55
  10. Nakahara H, Sasaki H, Murata T, Yamachi M, Proceedings of the 38th Battery Symposium, Japan, 1997, p.305
  11. Fukunaga H, Nagai R, Proceedings of the 38th Battery Symposium, Japan, 1997, p.301
  12. Yunchang D, Jiongliang Y, Zhaorong C, J. Power Sources, 1997;69:47 https://doi.org/10.1016/S0378-7753(97)02565-2
  13. Sugita K, Ohkuma S, Denki Kagaku, Electrochemistry, 1973;41:440
  14. Tuomi D, J. Electrochem. Soc., 1965;112:1 https://doi.org/10.1149/1.2423457
  15. Armstrong RD, Briggs GWD, Moore MA, Electrochim Acta, 1986;31:25 https://doi.org/10.1016/0013-4686(86)80056-1
  16. P. Oliva, J. Ieomardi and J. F. Laurent. J. Power Sourecs, 8 (1982) 229-255 https://doi.org/10.1016/0378-7753(82)80057-8
  17. D. Singh, J. Electrochem. Soc., 145 (1989) 116
  18. Ta KP, Newman J, J. Electrochem Soc 1998;145:3860 https://doi.org/10.1149/1.1838886
  19. Macarthur DM, J. Electrochem Soc 1970;117;729 https://doi.org/10.1149/1.2407618
  20. Ho-Sung Kim, Matsuhiko Nishizawa, Isamu Uchida, Electrochim. Acta, 45 (1999) 483-488 https://doi.org/10.1016/S0013-4686(99)00269-8