• 제목/요약/키워드: oxidation barrier

Search Result 202, Processing Time 0.033 seconds

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential $3\omega$ Method (차등 $3\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin, Sang-Woo;Cho, Han-Na;Cho, Hyung-Hee
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential $3\omega$ method. Also, verification of differential $3\omega$ method has been accomplished with various proposed criteria. The target film for the measurement is 300 nm thick silicon dioxide which is covered with upper protective layer of various thicknesses. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. Since the verification of differential $3\omega$ method has not been conducted yet, we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential $3\omega$ method is verified to be reliable as long as the proposed preconditions of the samples are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between thickness of the upper protective layer and width of the heater line due to heat spreading effect.

  • PDF

Characterization of Anodized Al 1050 with Electrochemically Deposited Cu, Ni and Cu/Ni and Their Behavior in a Model Corrosive Medium

  • Girginov, Christian;Kozhukharov, Stephan;Tsanev, Alexander;Dishliev, Angel
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.188-203
    • /
    • 2021
  • The specific benefits of the modified films formed on preliminary anodized aluminum, including the versatility of their potential applications impose the need for evaluation of the exploitation reliability of these films. In this aspect, the durability of Cu and Ni modified anodized aluminum oxide (AAO) films on the low-doped AA1050 alloy was assessed through extended exposure to a 3.5% NaCl model corrosive medium. The electrochemical measurements by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 and 720 hours of exposure have revealed that the obtained films do not change their obvious barrier properties. In addition, supplemental analyses of the coatings were performed, in order to elucidate the impact of the AC-deposition of Cu and Ni inside the pores. The scanning electron microscopy (SEM) images have shown that the surface topology is not affected and resembles the typical surface of an etched metal. The subsequent energy dispersive X-ray spectroscopy (EDX) tests have revealed a predominance of Cu in the combined AAO-Cu/Ni layers, whereas additional X-ray photoelectron (XPS) analyses showed that both metals form oxides with different oxidation states due to alterations in the deposition conditions, promoted by the application of AC-polarization of the samples.

Review on Tin Perovskite Solar Cells: Material and Device Properties (주석 페로브스카이트 태양전지에 관한 고찰: 재료 및 장치적 특성)

  • Dayeong Choi;Seyeong Lim;Hangyeol Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.18-26
    • /
    • 2023
  • Tin perovskite solar cells have attracted a lot of attention due to their potential to address the toxicity of lead, which is the biggest barrier to commercialization of perovskite solar cells. Unlike other lead-free perovskite, tin perovskite have a direct bandgap, which is suitable for use as light harvesting, and relatively good stability, which has led to a lot of attention. Since the first tin perovskite solar cell was reported in 2014, it has achieved an impressive power conversion efficiency of 14.81%. However, this efficiency is still low compared to that of lead perovskite solar cells, and the stability of tin perovskite solar cells is also an issue that needs to be addressed. In this review, we will discuss the basic properties of the tin atom in comparison to the lead atom, and then discuss the crystal structure, phase transition, and basic properties of tin perovskite. We will then discuss the advantages, applications, challenges, and strategies of tin perovskite, In particular, we will focus on how to prevent the oxidation of tin, which is arguably the biggest challenge for using tin perovskite solar cells. At the end, we summarize the key factors that need to be addressed for higher efficiency and stability, emphasizing what is needed to commercialize tin perovskite solar cells.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF

Electrical and Chemical Properties of ultra thin RT-MOCVD Deposited Ti-doped $Ta_2O_5$

  • Lee, S. J.;H. F. Luan;A. Mao;T. S. Jeon;Lee, C. h.;Y. Senzaki;D. Roberts;D. L. Kwong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.202-208
    • /
    • 2001
  • In Recent results suggested that doping $Ta_2O_5$ with a small amount of $TiO_2$ using standard ceramic processing techniques can increase the dielectric constant of $Ta_2O_5$ significantly. In this paper, this concept is studied using RTCVD (Rapid Thermal Chemical Vapor Deposition). Ti-doped $Ta_2O_5$ films are deposited using $TaC_{12}H_{30}O_5N$, $C_8H_{24}N_4Ti$, and $O_2$ on both Si and $NH_3$-nitrided Si substrates. An $NH_3$-based interface layer at the Si surface is used to prevent interfacial oxidation during the CVD process and post deposition annealing is performed in $H_2/O_2$ ambient to improve film quality and reduce leakage current. A sputtered TiN layer is used as a diffusion barrier between the Al gate electrode and the $TaTi_xO_y$ dielectric. XPS analyses confirm the formation of a ($Ta_2O_5)_{1-x}(TiO_2)_x$ composite oxide. A high quality $TaTi_xO_y$ gate stack with EOT (Equivalent Oxide Thickness) of $7{\AA}$ and leakage current $Jg=O.5A/textrm{cm}^2$ @ Vg=-1.0V has been achieved. We have also succeeded in forming a $TaTi_x/O_y$ composite oxide by rapid thermal oxidation of the as-deposited CVD TaTi films. The electrical properties and Jg-EOT characteristics of these composite oxides are remarkably similar to that of RTCVD $Ta_2O_5, suggesting that the dielectric constant of $Ta_2O_5$ is not affected by the addition of $TiO_2$.

  • PDF

MR Characteristics of CoO based Magnetic tunnel Junction (CoO를 절연층으로 이용한 스핀 의존성 터널링 접합에서의 자기저항 특성)

  • 정창욱;조용진;안동환;정원철;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.159-163
    • /
    • 2000
  • MR characteristics in magnetic tunnel junction using CoO as the oxide barrier were investigated. Spin-dependent tunnel junctions were fabricated on 4$\^$o/ tilt-cut (111)Si substrates in 3-gun magnetron sputtering system. The top and bottom ferromagnetic electrodes were Ni$\_$80/Fe$\_$20/(300 $\AA$) and Co(300 $\AA$), respectively. The oxide barriers (CoO) were formed by the thermal oxidation at room temperature in an O$_2$ atmosphere and the plasma oxidation. The increase of coercive field due to antiferromagnetic-ferromagnetic coupling has been observed in O$_2$plasma-oxidized CoO based junctions at room temperature. At a sensing current of 1 mA, MR ratios of O$_2$plasma-oxidized CoO based junction and thermal-oxidized CoO based junction at room temperature were 1% and 5%, respectively. Larger MR ratios are observed in magnetic tunnel juctions with thermal oxidized CoO when sensing current more than applied 1.5 mA. At a sensing current of 1.5 mA, we have observed MR value of 28 % and specific resistance (RA=R$\times$A) value of 10.9 ㏀$\times$$^2$. When specific resistance values reached 2.28 ㏀$\times$$^2$, we have observed that MR ratios become as high as 120%.

  • PDF

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

Preliminary Experiments for the Remediation of Trichloroethene-Contaminated Groundwater Using Direct-Current and Zero-Valent Iron (0가 철과 직류전원을 이용한 TCE 오염 지하수의 정화기법 예비조사)

  • Moon, Ji-Won;Moon, Hi-Soo;Roh, Yul;Lee, Suk-Young;Song, Yun-Goo
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.307-313
    • /
    • 2001
  • Reactive medium including zero-valent metals such as zero-valent iron ($Fe^0$) degrades chlorinated solvents as a contaminant plume flows through the treatment medium. Although the Feo based reactive barrier has been demonstnlted to be a cost effective for trichloroethenc (TCE)-contaminaled plume remediation, current approach is limited by low process eftlciency and uncertain, effective life of the medium. The objective of this study is to develop an enhanced treatment method of TeE-contaminated groundwater using Feo and direct current. The bench-scale test using flow-through $Fe^0$ reactor column confirmed that the application of direct current with $Fe^0$ is highly effective in enhancing the rate of TeE dechlorination. The dechlorination mechanism appears to be reductive, with the electrons supplied by the iron oxidation and external power supply serving as the additional source of electrons.

  • PDF

Optimization of Air-plasma and Oxygen-plasma Process for Water Treatment Using Central Composite Design and Response Surface Methodology (중심합성설계와 반응표면분석법을 이용한 수처리용 산소-플라즈마와 공기-플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.907-917
    • /
    • 2011
  • This study investigated the application of experimental design methodology to optimization of conditions of air-plasma and oxygen-plasma oxidation of N, N-Dimethyl-4-nitrosoaniline (RNO). The reactions of RNO degradation were described as a function of the parameters of voltage ($X_1$), gas flow rate ($X_2$) and initial RNO concentration ($X_3$) and modeled by the use of the central composite design. In pre-test, RNO degradation of the oxygen-plasma was higher than that of the air-plasma though low voltage and gas flow rate. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and test variables in a coded unit: RNO removal efficiency (%) = $86.06\;+\;5.00X_1\;+\;14.19X_2\;-\;8.08X_3\;+\;3.63X_1X_2\;-\;7.66X_2^2$ (air-plasma); RNO removal efficiency (%) = $88.06\;+\;4.18X_1\;+\;2.25X_2\;-\;4.91X_3\;+\;2.35X_1X_3\;+\;2.66X_1^2\;+\;1.72X_3^2$ (oxygen-plasma). In analysis of the main effect, air flow rate and initial RNO concentration were most important factor on RNO degradation in air-plasma and oxygen-plasma, respectively. Optimized conditions under specified range were obtained for the highest desirability at voltage 152.37 V, 135.49 V voltage and 5.79 L/min, 2.82 L/min gas flow rate and 25.65 mg/L, 34.94 mg/L initial RNO concentration for air-plasma and oxygen-plasma, respectively.

High-Voltage GaN Schottky Barrier Diode on Si Substrate Using Thermal Oxidation (열 산화공정을 이용하여 제작된 고전압 GaN 쇼트키 장벽 다이오드)

  • Ha, Min-Woo;Roh, Cheong-Hyun;Choi, Hong-Goo;Song, Hong-Joo;Lee, Jun-Ho;Kim, Young-Shil;Han, Min-Koo;Hahn, Cheol-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1418-1419
    • /
    • 2011
  • 차세대 전력 반도체인 고전압 GaN 쇼트키 장벽 다이오드의 역방향 특성을 개선하기 위해서 열 산화공정이 제안되었다. AlGaN/GaN 에피탁시 위에 쇼트키 장벽 다이오드 구조가 제작되었으며, 쇼트키 컨택은 증착 후 $450^{\circ}C$에서 산화되었다. 열 산화공정이 메사 측벽의 AlGaN 및 GaN 표면에 $AlO_x$$GaO_x$를 형성하여 표면으로 흐르는 누설전류를 억제한다. 표면 및 GaN 버퍼를 통한 누설전류는 열 산화 공정 이후 100 ${\mu}m$-너비당 51.3 nA에서 24.9 pA로 1/2000 배 수준으로 감소하였다. 표면 산화물 형성으로 인하여 생성된 Ga-vacancy와 Al-vacancy는 acceptor로 동작하여 surface band bending을 증가시켜 쇼트키 장벽 높이를 증가시킨다. 애노드-캐소드 간격이 5 ${\mu}m$인 제작된 소자는 0.99 eV의 높은 쇼트키 장벽 높이를 획득하여, -100 V에서 0.002 A/$cm^2$의 낮은 누설전류를 확보하였다. 애노드-캐소드 간격이 5에서 10, 20, 50 ${\mu}m$로 증가되면 소자의 항복전압은 348 V에서 396, 606, 941 V로 증가되었다. 열 산화공정은 전력용 GaN 전자소자의 누설전류감소와 항복전압 증가를 위한 후처리 공정으로 적합하다.

  • PDF