• 제목/요약/키워드: overturning angle

검색결과 30건 처리시간 0.021초

Analysis of Static Stability by Modified Mathematical Model for Asymmetric Tractor-Harvester System: Changes in Lateral Overturning Angle by Movement of Center of Gravity Coordinates

  • Choi, Kyu-hong;Kim, Seong-Min;Hong, Sungha
    • Journal of Biosystems Engineering
    • /
    • 제42권3호
    • /
    • pp.127-135
    • /
    • 2017
  • Purpose: Purpose: The usability of a mathematical model modified for analysis of the static stability of an asymmetric tractor-harvester system was investigated. Method: The modified asynchronous mathematical model was validated through empirical experiments, and the effects of movements of the center of gravity (CG) coordinates on the stability against lateral overturning were analyzed through simulations. Results: Changes in the lateral overturning angle of the system were investigated when the coordinates of the CG of the system were moved within the variable range. The errors between simulation results and empirical experiments were compared, and the results were -4.7% at the left side overturning and -0.1% at the right side overturning. The asymmetric system was characterized in such a way that the right side overturning had an increase in overturning angle in the (+) variable range, while it had a decrease in overturning angle in the (-) variable range. In addition, the left side overturning showed an opposite result to that of the right side. At the declination angle (296<${\gamma}$<76), the right side overturning had an increase in the maximum overturning angle of 3.6%, in the minimum overturning angle of 20.3%, and in the mean overturning angle of 15.9%. Furthermore, at the declination angle (284<${\gamma}$<64), the left side overturning had a decrease in the maximum overturning angle of 29.2%, in the minimum overturning angle of 44%, and in a mean overturning angle of 39.7%. Conclusion: The modified mathematical model was useful for predicting the overturning angle of the asymmetric tractor-harvester system, and verified that a movement of the CG coordinates had a critical effect on its stability. In particular, the left side overturning was the most vulnerable to stability, regardless of the direction of declination angle.

이동식크레인의 과부하방지장치용 광각도 핀형 로드셀의 창의적 설계 (Creative Design of Large-Angle Pin Type Load Cell for the Overload Limiter of a Movable Crane)

  • 한동섭;하정민;한근조
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.35-41
    • /
    • 2010
  • An overload limiter is used to prevent its overturning accident during an operation of a movable crane. Recently the indirect measuring method, which measures hoisting load and overturning moment of overload limiter, demands instead of the existing method, which measures only hoisting load. The indirectly measuring method is how to conduct the hoisting load and overturning moment as measuring the load of hydraulic cylinder for a luffing driving of boom. So we need to develop the multi-angular pin type load cell with the measuring angle of ${\pm}10$ degree instead of the existing load cell with the measuring angle of ${\pm}2$ degree. In this study the finite element analysis is conducted to evaluate the effect of the aspect ratio of measuring cross section on the measuring limit of the load cell to develop the many-angular pin type load cell. For this investigation, the aspect ratio of measuring cross section and load applying angle were adopted as design parameters and the stresses of measuring part were evaluated for each parameter.

Analysis of Static Lateral Stability Using Mathematical Simulations for 3-Axis Tractor-Baler System

  • Hong, Sungha;Lee, Kyouseung;Kang, Daein;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • 제42권2호
    • /
    • pp.86-97
    • /
    • 2017
  • Purpose: This study aims to evaluate the applicability of a tractor-baler system equipped with a newly developed round baler by conducting stability analyses via static-state mathematical simulations and verification experiments for the tractor equipped with a loader. Methods: The centers of gravity of the tractor and baler were calculated to analyze the transverse overturning of the system. This overturning of the system was analyzed by applying mathematical equations presented in previous research and comparing the results with those obtained by the newly developed mathematical simulation. For the case of the tractor equipped with a loader, mathematical simulation results and experimental values from verification experiments were compared and verified. Results: The center of gravity of the system became lower after the baler was attached to the tractor and the angle of transverse overturning of the system steadily increased or decreased as the deflection angle increased or decreased between $0^{\circ}$ and $180^{\circ}$ on the same gradient. In the results of the simulations performed by applying mathematical equations from previous research, right transverse overturning occurred when the tilt angle was at least $19.5^{\circ}$ and the range of deflection angles was from $82^{\circ}$ to $262^{\circ}$ in counter clockwise. Additionally, left transverse overturning also occurred at tilt angles of at least $19.5^{\circ}$ and the range of deflection angles was from $259^{\circ}$ to $79^{\circ}$ in counter clockwise. Under the $0^{\circ}$ deflection angle condition, in simulations of the tractor equipped with a loader, transverse overturning occurred at $17.9^{\circ}$, which is a 2.3% change from the results of the verification experiment ($17.5^{\circ}$). The simulations applied the center of gravity and the correlations between the tilt angles, formed by individual wheel ground contact points excluding wheel radius and hinge point height, which cannot be easily measured, for the convenient use of mathematical equations. The results indicated that both left and right transverse overturning occurred at $19.5^{\circ}$. Conclusions: The transverse overturning stability evaluation of the system, conducted via mathematical equation modeling, was stable enough to replace the mathematical equations proposed by previous researchers. The verification experiments and their results indicated that the system is workable at $12^{\circ}$, which is the tolerance limit for agricultural machines on the sloped lands in South Korea, and $15^{\circ}$, which is the tolerance limit for agricultural machines on the sloped grasslands of hay in Japan.

크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정 (Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom)

  • 장효필;한동섭
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.

석축의 단면결정에 대한 해석적 연구 (An Analytical Study on Determination of Dimensions of Drystone Masonry Retaining Walls)

  • 이승현
    • 한국재난정보학회 논문집
    • /
    • 제19권1호
    • /
    • pp.60-68
    • /
    • 2023
  • 연구목적: 본 연구에서는 석축단면의 설계를 지배하는 안정성 검토조건과 그에 따라 계산되는 블록 설치 폭의 변화양상을 살펴보고자 하였다. 연구방법: 이를 위해 높이 10m 인 석축을 가정하고 석축을 구성하는 블록 및 지반조건 등에 관해서는 일반적인 설계 값을 적용하여 활동 및 전도를 고려한 석축단면을 결정해보고 그 결과를 비교해 보았다. 연구결과: 설계결과에 따르면 활동에 대한 안정을 고려하여 결정된 블록의 설치 폭이 전도를 고려하여 결정된 블록의 설치 폭 보다 현저하게 작음을 알 수 있었는데 이러한 차이는 활동에 대한 안전율을 전도에 대한 안전율과 같게 적용하더라도 크게 개선되지는 않았다. 전도를 고려하여 블록 설치 폭을 결정하는 방법에는 전도되는 부분의 바닥을 수평으로 보는 방법과 하부의 파괴쐐기를 고려하는 방법이 있는데 석축의 설계를 지배하는 방법은 하부의 파괴쐐기를 고려하는 방법임을 알 수 있었다. 결론: 전도되는 부분의 하부 파괴쐐기를 고려하는 경우 가정한 파괴쐐기의 경사각이 클수록 블록 설치 폭 또한 커짐을 알 수 있었다. 특정한 경사각을 갖는 파괴쐐기를 가정한 벽체에 대하여 벽체 하부에서의 전도를 고려하는 경우 석축의 기하학적 제약조건에 의해 파괴쐐기의 경사각이 감소하게 되어 블록 설치 폭 또한 감소함을 알 수 있었다.

Experimental study on the influence of Reynolds number and roll angle on train aerodynamics

  • Huang, Zhixiang;Li, Wenhui;Liu, Tanghong;Chen, Li
    • Wind and Structures
    • /
    • 제35권2호
    • /
    • pp.83-92
    • /
    • 2022
  • When the rolling stocks run on the curve, the external rail has to be lifted to a certain level to balance the centrifugal force acting on the train body. Under such a situation, passengers may feel uncomfortable, and the slanted vehicle has the potential overturning risks at high speed. This paper conducted a wind tunnel test in an annular wind tunnel with φ=3.2 m based on a 1/20th scaled high-speed train (HST) model. The sensitivity of Reynolds effects ranging from Re = 0.37×106 to Re = 1.45×106 was tested based on the incoming wind from U=30 m/s to U=113 m/s. The wind speed covers the range from incompressible to compressible. The impact of roll angle ranging from γ=0° to γ=4° on train aerodynamics was tested. In addition, the boundary layer development was also analyzed under different wind speeds. The results indicate that drag and lift aerodynamic coefficients gradually stabilized and converged over U=70 m/s, which could be regeared as the self-similarity region. Similarly, the thickness of the boundary layer on the floor gradually decreased with the wind speed increase, and little changed over U=80 m/s. The rolling moment of the head and tail cars increased with the roll angle from γ=0° to γ=4°. However, the potential overturning risks of the head car are higher than the tail car with the increase of the roll angle. This study is significant in providing a reference for the overturning assessment of HST.

Design and Safety Performance Evaluation of the Riding Three-Wheeled Two-Row Soybean Reaper

  • Jun, Hyeon-Jong;Choi, Il-Su;Kang, Tae-Gyoung;Kim, Young-Keun;Lee, Sang-Hee;Kim, Sung-Woo;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • 제41권4호
    • /
    • pp.288-293
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the key factors in designing a three-wheeled two-row soybean reaper (riding type) that is suitable for soybean production, and ensure worker safety by proposing optimal work conditions for the prototype of the designed machine in relation to the slope of the road. Methods: A three-wheeled two-row soybean reaper (riding type) was designed and its prototype was fabricated based on the local soybean-production approach. This approach was considered to be closely related to the prototype-designing of the cutter and the wheel driving system of the reaper. Load distribution on the wheels of the prototype, its minimum turning radius, static lateral overturning angle, tilt angle during driving, and The working and rear overturning (back flip) angle were measured. Based on the gathered information, investigations were conducted regarding optimal work conditions for the prototype. The investigations took into account driving stability and worker safety. Results: The minimum ground clearance of the prototype was 0.5 m. The blade height of the prototype was adjusted such that the cutter was operated in line with the height of the ridges. The load distribution on the prototype's wheels was found to be 1 (front wheel: F): 1.35 (rear-left wheel: RL): 1.43 (rear-right wheel: RR). With the ratio of load distribution between the RL and RR wheels being 1: 1.05, the left-to-right lateral loads were found to be well-balanced. The minimum turning radius of the prototype was 2.0 m. Such a small turning radius was considered to be beneficial for cutting work on small-scale fields. The sliding of the prototype started at $25^{\circ}$, and its lateral overturning started at $39.3^{\circ}$. Further, the critical slope angle for the worker to drive the prototype in the direction of the contour line on an incline was found to be $12.8^{\circ}$, and the safe angle of slope for the cutting was measured to be less than $6^{\circ}$. The critical angle of slope that allowed for work was found to be $10^{\circ}$, at which point the prototype would overturn backward when given impact forces of 1,060 N on its front wheel. Conclusions: It was determined that farmers using the prototype would be able to work safely in most soybean production areas, provided that they complied with safe working conditions during driving and cutting.

고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구 (Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity)

  • 이한선;고동우
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

스크롤 압축기에서 축방향 순응하는 고정부재의 안정성 (Stability of the axially compliant fixed scroll in scroll compressors)

  • 김현진;이원학
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.93-103
    • /
    • 1997
  • This study presents a way of improving the stability of fixed scroll in scroll compressors. For the scroll compressor whose fixed scroll is designed to move in the axial direction for the axial compliance, the fixed scroll is under the influence of the overturning moment produced by internal gas forces. Unless the overturning moment is properly compensated by the moments of reaction forces at the suspension of the fixed scroll to the compressor frame, the fixed scroll would exhibit wobbling motion, increasing gas leakage through the gap induced by the wobbling of the fixed scroll between the two scroll members. The conditions on which the wobbling motion can be suppressed have been found analytically; The axial position of the fixed scroll suspension should be made within a certain range. The upper limit of this range is the axial location for the o-rings which are inserted between the fixed scroll and the back pressure chamber to promote sealing for the gas in the back pressure chamber. And the lower limit is mainly determined by the magnitude of the axial sealing force. As long as the axial sealing force is not negative over all crank angles, the lower limit is not above the mid-height of the scroll wrap. Larger axial sealing force lower the lower limit.

  • PDF