• Title/Summary/Keyword: overlapping grid method

Search Result 17, Processing Time 0.019 seconds

Study on hydrodynamic performance of Heavier-than-water AUV with overlapping grid method

  • Li, Xiang;Zhao, Min;Zhao, Faming;Yuan, Qingqing;Ge, Tong
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Hydrodynamic coefficients strongly affect the dynamic performance of autonomous underwater vehicles (AUVs). A novel kind of underwater vehicle (Heavier-than-water AUV) with higher density than water is presented, which is different from conventional ones. RANS method and overlapping grids are used to simulate the flow field around the vehicle. Lifts, drags and moments of different attack and drift angles in steady state are calculated. The hydrodynamic performances and how the forces change with the attitude are analyzed according to the flow field structure. The steady-state results using overlapping grid method are compared with those of software FLUENT and wind tunnel tests. The calculation results show that the overlapping grid method can well simulate the viscous flow field around the underwater vehicle. Overlapping grid skills have also been used to figure out the planar-motion-mechanism (PMM) problem of Heavier-than-water AUV and forecast its hydrodynamic performance, verifying its effectiveness in dealing with the dynamic problems, which would be quite helpful for design and control of Heavier-than-water AUV and other underwater vehicles.

A Grid Generation Technique for the External Flow Fields Utilizing the Predictor-Corrector Scheme (Predictor-Corrector를 활용한 외부 유동장 격자 생성 기법)

  • Kim B. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.84-92
    • /
    • 1997
  • In this paper a new structured grid generation technique is introduced. This new technique utilizes predictor-corrector approach, and is a marching scheme in the global sense as the hyperbolic scheme is. In the predictor step, one layer of grid cells is obtained by using Modified Advancing Front Method which generates a collection of quadrilateral cells simultaneously. In the corrector step, the layer of grid cells that is calculated in the predictor step is adjusted by solving Laplace equations to prevent grid lines from skewing and overlapping in highly curved configurations. It is shown that the resultant algorithm, named a MAP scheme, which combines the Modified Advancing Front Method as a Predictor with an elliptic scheme as a corrector can be used to generate globally smooth and locally near-orthogonal grids for external flow fields even for highly curved configurations. Examples of grid generations for external flow fields about several configurations by use of the present approach are given, and its applicability and flexibility have been demonstrated and discussed.

  • PDF

Application of the Overset Grid Scheme (Suggar++) for Flow Analysis around a Ship (선박의 유동해석 문제에 대한 중첩격자기법(Suggar++)의 활용)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • Recent CFD solvers in engineering have to treat geometrically complex domains and moving body problems. In ship hydrodynamics, flow around the stern and ship motions in waves are examples of such cases mentioned before. The unstructured grid scheme is successfully applied for these problems, but it has weakness of inefficient memory usage and intensive computational time as compared to the structured grid method. Overset grid scheme is one of the alternatives for structured grid system taking advantage of fast and memory efficiency. Overset grid scheme is especially useful for moving body problem because there is no need to re-mesh around the body. In this paper, we adopted the Suggar++, the grid connectivity and interpolation utility for the overlapping grid, to WAVIS which is the in-house flow solver of KRISO. Then we introduced some applications using the overset grid method for flow analysis around the ships. The computed results show that WAVIS with Suggar++ is practically feasible and has an advantages for moving geometry cases.

Composite Overlapping Meshes for the Solution of Radiation Forces on Submerged-Plate

  • Kong, Gil-Young;Lee, Sang-Min;Lee, Yun-Sok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1203-1212
    • /
    • 2004
  • The purpose of this study is to predict and understand the hydrodynamic forces and their nonlinear behaviors of fluid motion around the submerged plate oscillating near a free surface. To achieve this objective, we have developed a composite grid method for the solution of a radiation problem. The domain is divided into two different grids; one is a moving grid system and the other is a fixed grid system. The moving grid is employed for the body fitted coordinate system and moves with the body. This numerical method is applied to calculation of radiation forces generated by the submerged plate oscillating near a free surface. In order to investigate the characteristics of the radiation forces, the forced heaving tests have been performed with several amplitudes and different submergences near a free surface. These experimental results are compared with the numerical ones obtained by the present method and a linear potential theory. As a result, we can confirm the accuracy of the present method. Finally, the effect of nonlinear and viscous damping has been evaluated on the hydrodynamic forces acting on the submerged plate.

Numerical Simulation of Body Motion Using a Composite Grid System (중첩 격자계를 이용한 물체운동의 수치 시뮬레이션)

  • 박종천;전호환;송기종
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

A DOMAIN DECOMPOSITION PRECONDITIONER FOR STEADY GROUNDWATER FLOW IN POROUS MEDIA

  • Ghahreman, N.;Kerayechian, A.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.773-785
    • /
    • 2000
  • In this paper an algorithm is presented based on the additive Schwarz method for steady groundwater flow in a porous medium. The subproblems in the algorithm correspond to the problem on a coarse grid and some overlapping subdomains. It will be shown that the rate of convergence is independent of the mesh parameters and discontinuities of the coefficients, and depends on the overlap ratio.

UNSTEADY FLOW SIMULATION FOR POWERED TILTROTOR UAV (스마트무인기 파워 전기체 비정상 유동해석)

  • Choi, S.W.;Kim, J.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.8-13
    • /
    • 2007
  • Unsteady flow simulation for the tiltrotor Smart UAV configuration was performed to investigate the powered rotor wake effect on aerodynamic characteristics. Calculations were performed to simulate various flow conditions based on different flight modes including hover, conversion and cruise. Three-dimensional compressible Navier-Stokes equation code were used for flow calculation and Chimera grid technique overlapping individually generated grids was employed. A dynamic grid method was adopted in simulation of the rotating blades. Flow calculations were also conducted for the un-powered case. Aerodynamic interaction between the rotor and airframe was investigated comparing three data sets from the un-powered, powered, and isolated rotor cases.

  • PDF

Image Stitching Using Normalized Cross-Correlation and the Thresholding Method in a Fluorescence Microscopy Image of Brain Tumor Cells (정규 상호상관도 및 이진화 기법을 이용한 뇌종양 세포의 형광 현미경 영상 스티칭)

  • Seo, Ji Hyun;Kang, Mi-Sun;Kim, Hyun-jung;Kim, Myoung-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.979-985
    • /
    • 2017
  • This paper, which covers a fluorescence microscopy image of brain tumor cells, looks at drug reactions by treating different types and concentrations of drugs on a plate of $24{\times}16$ wells. Due to the limitation of the field of view, a well was taken into 9 field images, and each has an overlapping area with its neighboring fields. To analyze more precisely, image stitching is needed. The basic method is finding a similar area using normalized cross-correlation (NCC). The problem is that some overlapping areas may not have any duplicated cells that help to find the matching point. In addition, the cell objects have similar sizes and shapes, which makes distinguishing them difficult. To avoid calculating similarity between blank areas and roughly distinguishing different cells, thresholding is added. The thresholding method classifies background and cell objects based on fixed thresholds and finds the location of the first seen cell. After getting its location, NCC is used to find the best correlation point. The results are compared with a simple boundary stitched image. Our proposed method stitches images that are connected in a grid form without collision, selecting the best correlation point among areas that contain overlapping cells and ones without it.

Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim Chang-Seong;Kim Jong-Am;No O Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF

The Generation of a Digital Elevatio Model in Tidal Flat Using Multitemporal Satellite Data (다시기 위성자료에 의한 조간대 수치지형모델의 작성)

  • 安忠鉉;梶原康司;建石降太郞;劉洪龍
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.2
    • /
    • pp.131-145
    • /
    • 1992
  • A low cost personal computer and image processing S/W were empolyed to derive Digtal Elevation Model(DEM) of tidal flat from multitemporal LANDSAT TM images, and to create three-dimensional(3D) perspective views of the tidel flat on Komso bay in west coasts of Korea. The method for generation of Digital Elevation Model(DEM) in tidal flat was considered by overlapping techniques of multitemporal LANDSAT TM images and interpolations. The boundary maps of tidal flat extracted from multitemporal images with different water high were digitally combined in x, y, z space with tide in formation and used as an inputcontour data to obtain an elevation model by interpolation using spline function. Elevation errors of less than $\pm$0.1m were achived using overlapping techniques and a spline interpolation approach, respectively. The derived DEM allows for the generation of a perspective grid and drape on the satellite image values to create a realistic terrain visualization model so that the tidal flat may be viewed from and desired direction. As the result of this study, we obtained elevation model of tidal flats which contribute to characterize of topography and monitoring of morphological evolution of tidal flats. Moreover, the modal generated here can be used for simulation of innudation according to tide and support other studies as a supplementary data set.