• Title/Summary/Keyword: ovarian cells

Search Result 473, Processing Time 0.025 seconds

Xenografting of the Human Vitrified Ovarian Tissues into the Immune Deficient Animal (사람 난소조직의 초자화 냉동보존과 면역결핍 동물에의 이식)

  • Lee, Kyung-Ah;Yoon, Se-Jin;Lee, Sook-Hyun;Shin, Chang-Sook;Choi, An-Na;Cho, Yong-Seon;Yoon, Tae-Ki;Cha, Kwang-Yul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.2
    • /
    • pp.145-149
    • /
    • 2000
  • Objective: The present study was conducted to evaluate the viability of germ cells from the adult and fetal ovarian tissues after vitrification followed by xenografting. Method: The human adult ovarian tissues were obtained from 33 years old patient, and the fetal ovarian tissues were obtained from 22 weeks and 25 weeks in gestation. Ovarian tissues were cryopreserved by vitrification with 5.5 M ethylene glycol (EG 5.5) and 1.0 M sucrose as cryoprotectants. Adult and fetal ovarian tissues were pre-equilibrated with EG 5.5 at room temperature for 10 and 5 minutes, respectively and plunged into liquid nitrogen immediately. Frozen-thawed tissues were xenografted into NOD-SCID mice to evaluate the viability and capacity for further growth of the primordial follicles. Grafts were recovered from the recipients 4 weeks after transplantation and histological analysis was accomplished. Result and Conclusion: Grafts recovered 4 weeks after transplantation contained less number of oocytes and primordial follicles compared to that of the fresh tissues. Survived follicles were mainly primordial and intermediary with larger diameter and more granulosa cells. It is confirmed that 1) the ovarian tissues were healthy and the germ cells were survived after vitrification, and 2) the survived fetal primordial follicles after vitrification resumed the growth in the xenografts.

  • PDF

Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action

  • Attar, Rukset;Gasparri, Maria Luisa;Di Donato, Violante;Yaylim, Ilhan;Halim, Talha Abdul;Zaman, Farrukh;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3359-3362
    • /
    • 2014
  • Increasing attention is being devoted to the mechanisms by which cells receive signals and then translate these into decisions for growth, death, or migration. Recent findings have presented significant breakthroughs in developing a deeper understanding of the activation or repression of target genes and proteins in response to various stimuli and of how they are assembled during signal transduction in cancer cells. Detailed mechanistic insights have unveiled new maps of linear and integrated signal transduction cascades, but the multifaceted nature of the pathways remains unclear. Although new layers of information are being added regarding mechanisms underlying ovarian cancer and how polymorphisms in VDR gene influence its development, the findings of this research must be sequentially collected and re-interpreted. We divide this multi-component review into different segments: how vitamin D modulates molecular network in ovarian cancer cells, how ovarian cancer is controlled by tumor suppressors and oncogenic miRNAs and finally how vitamin D signaling regulates miRNA expression. Intra/inter-population variability is insufficiently studied and a better understanding of genetics of population will be helpful in getting a step closer to personalized medicine.

Overexpression of Profilin 1 Inhibited Ovarian Tumor Cell Growth and Migration (Profilin-1 과발현에 의한 난소암 세포 성장 및 이동 저해 효능 연구)

  • Lee, Seung-Hoon
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Abnormal actin remodeling is a typical characteristic of tumor cells. Thymosin ${\beta}_{10}$ (TB10) and profilin-1 (PFN-1) are actin-binding proteins and essential regulators of actin polymerization. We previously showed that TB10 induced death in ovarian cancer cells by sequestering F-actin, but the underlying mechanisms of this induction have not been explored. In this study, we identified TB10 as a novel regulator of PFN-1 and demonstrated its novel function as a tumor suppressor in ovarian cancer cell lines. The present study investigated protein expression profiles through polyacrylamide gel electrophoresis (PAGE) and liquid chromatography-mass spectroscopy (LC-MS/MS) in SKOV3 cells, an ovarian cancer cell line, that were transiently transfected with TB10. PFN-1 was highly overexpressed in response to TB10, and overexpression of PFN-1 resulted in inhibition of cell proliferation and migration and promotion of cellular apoptosis in ovarian cancer cells. Furthermore, transiently transfected PFN-1 appeared to deactivate the Erk signaling pathway, followed by decreased expression of Elk-1 and Egr-1 in human ovarian cancer cells. Interestingly, PFN-1 did not affect the activation of Akt. The results demonstrated that PFN-1 induced apoptotic cell death and inhibited proliferation and migration in ovarian cancer cells, suggesting that PFN-1 may be valuable in anti-cancer therapy.

Effects of Valproic Acid on Proliferation, Apoptosis, Angiogenesis and Metastasis of Ovarian Cancer in Vitro and in Vivo

  • Shan, Zhao;Feng-Nian, Rong;Jie, Geng;Ting, Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3977-3982
    • /
    • 2012
  • Inhibitors of histone deacetylase activity are emerging as a potentially important new class of anticancer agents. In this study, we assessed the anticancer effects of valproic acid (VPA) on ovarian cancer in vitro and in vivo. Cultured SKOV3 cells were treated by VPA with different concentrations and time, then the effects on cell growth, cell cycle, apoptosis, and related events were investigated. A human ovarian cancer model transplanted subcutaneously in nude mice was established, and the efficacy of VPA used alone and in combination with diammine dichloroplatinum (DDP) to inhibit the growth of tumors was also assessed. Proliferation of SKOV3 cells was inhibited by VPA in a dose and time dependent fashion. The cell cycle distribution changed one treatment with VPA, with decrease in the number of S-phase cells and increase in G1-phase. VPA could significantly inhibit the growth of the epithelial ovarian cancer SKOV3 cells in vivo without toxic side effects. Treatment with VPA combined with DDP demonstrated enhanced anticancer effects. The result of flow cytometry (FCM) indicated that after VPA in vitro and in vivo, the expression of E-cadherin was increased whereas vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were decreased. This study suggests that VPA could be a novel attractive agent for treatment of ovarian cancer.

Characterization of a conjugated polysuccinimide-carboplatin compound

  • Sun Young Lee;Chang Hoon Chae;Miklos Zrinyi;Xiangguo Che;Je Yong Choi;Dong-Hyu Cho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Carboplatin, an advanced anticancer drug with excellent efficacy against ovarian cancer, was developed to alleviate the side effects that often occur with cisplatin and other platinum-based compounds. Our study reports the in vitro characteristics, viability, and activity of cells expressing the inducible nitric oxide synthase (iNOS) gene after carboplatin was conjugated with polysuccinimide (PSI) and administered in combination with other widely used anticancer drugs. PSI, which has promising properties as a drug delivery material, could provide a platform for prolonging carboplatin release, regulating its dosage, and improving its side effects. The iNOS gene has been shown to play an important role in both cancer cell survival and inhibition. Herein, we synthesized a PSI-carboplatin conjugate to create a modified anticancer agent and confirmed its successful conjugation. To ensure its solubility in water, we further modified the structure of the PSI-carboplatin conjugate with 2-aminoethanol groups. To validate its biological characteristics, the ovarian cancer cell line SKOV-3 and normal ovarian Chinese hamster ovary cells were treated with the PSI-carboplatin conjugate alone and in combination with paclitaxel and topotecan, both of which are used in conventional chemotherapy. Notably, PSI-carboplatin conjugation can be used to predict changes in the genes involved in cancer growth and inhibition. In conclusion, combination treatment with the newly synthesized polymer-carboplatin conjugate and paclitaxel displayed anticancer activity against ovarian cancer cells but was not toxic to normal ovarian cancer cells, resulting in the development of an effective candidate anticancer drug without severe side effects.

Nuclear DNA Damage and Repair in Normal Ovarian Cells Caused by Epothilone B

  • Rogalska, Aneta;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6535-6539
    • /
    • 2015
  • This study was designed to assess, whether a new chemotherapeutic microtubule inhibitor, Epothilone B (EpoB, Patupilone), can induce DNA damage in normal ovarian cells (MM14.Ov), and to evaluate if such damage could be repaired. The changes were compared with the effect of paclitaxel (PTX) commonly employed in the clinic. The alkaline comet assay technique and TUNEL assay were used. The kinetics of DNA damage formation and the level of apoptotic cells were determined after treatment with IC50 concentrations of EpoB and PTX. It was observed that PTX generated significantly higher apoptotic and genotoxic changes than EpoB. The peak was observed after 48 h of treatment when the DNA damage had a maximal level. The DNA damage induced by both tested drugs was almost completely repaired. As EpoB in normal cells causes less damage to DNA it might be a promising anticancer drug with potential for the treatment of ovarian tumors.

Fluoxetine affects cytosolic cAMP, ATP, Ca2+ responses to forskolin, and survival of human ovarian granulosa tumor COV434 cells

  • Nguyen, Thi Mong Diep;Klett, Daniele;Combarnous, Yves
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.189-195
    • /
    • 2021
  • Fluoxetine (FLX), a selective serotonin reuptake inhibitor antidepressant, exhibits various other mechanisms of action in numerous cell types and has been shown to induce cell death in cancer cells, paving the way for its potential use in cancer therapy. The aim of this study was to determine the off-target effects of the anti-depressant drug FLX, on the human ovarian granulosa tumor COV434 cells stimulated by forskolin (FSK), by measuring the real-time kinetics of intracellular cyclic AMP (cAMP), ATP level, cytoplasmic calcium ([Ca2+]cyt) and survival of COV434 cells. We show that incubating COV434 cells with FLX (between 0.6 and 10 μM) induces a decrease in intracellular cAMP response to FSK, a drop in ATP content and stimulates cytoplasmic Ca2+ accumulation in COV434 cells. Only the highest concentrations of FLX (5-10 μM) diminished cell viability. The present report is the first to identify an action mechanism of FLX in human tumor ovarian cells COV434 cells and thus opening the way to potential use of fluoxetine as a complementary tool, in granulosa tumor treatments.

The Basis of Different Sensitivities of Ovarian Cancer Cells to the Recombinant Adenoviral Vector System Containing a Tumor-Specific L-plastin Promoter and E. coli Cytosine Deaminase Gene as a Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2009
  • We have reported previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase gene (CD) is driven by the tumor-specific L-plastin promoter. AdLPCD vector had been evaluated for its efficacy of chemosensitization of ovarian cancer cells to 5-FC. In spite of the fact that ovarian cancer cells, i.e., OVCAR-3 and SK-OV-3, are capable for adenoviral transduction judged by LacZ reporter gene analysis, two cell lines demonstrated quite different sensitivities toward AdLPCD/5-FC system. In OVCAR-3 cells, infection of AdLPCD followed by exposure to 5-FC resulted in the suppression of cell growth with statistical significance. On the other hand, SK-OV-3 cells were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The object of study was to investigate factors that would determine the sensitivity to AdLPCD/5-FC. We evaluated conversion rate of 5-FC to 5-FU after infection of AdLPCD by HPLC analysis, $IC_{50}$ of 5-FU, the expression level of integrin receptors i.e., ${\alpha}v{\beta}3$ and ${\alpha}v{\beta}5$, and status of p53 in OVCAR-3 and SK-OV-3 cells. The results indicated that OVCAR-3 cells have few favorable features compared with SK-OV-3 cells to be more effective to the AdLPCD/5-FC strategy; higher level of ${\alpha}v{\beta}5$ integrin, higher rate of conversion of 5-FC into 5-FC, and lower $IC_{50}$ of 5-FU. The results suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

Preclinical Activity of Lobaplatin as a Single Agent and in Combination with Taxanes for Ovarian Carcinoma Cells

  • Sun, Xu;Lou, Li-Guang;Sui, Dong-Hu;Wu, Xiao-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9939-9943
    • /
    • 2014
  • Lobaplatin, one of the third - generation platinum compounds, has shown encouraging anticancer activity in a variety of tumor types. However, the efficacy of lobaplatin in ovarian cancer has not been systemically evaluated. In this study, lobaplatin as a single agent and in combination with taxanes was investigated in - vitro and in an in vitro model of ovarian carcinoma. Using the sulforhodamine B (SRB) assay, the cytotoxic effects of lobaplatin alone and in combination with taxanes were compared with cisplatin and carboplatin in seven ovarian cancer cell lines. In addition, in - vitro antitumor activities were evaluated with cisplatin - sensitive and cisplatin - resistant human ovarian cancer xenografts in nude mice. The cytotoxicity of lobaplatin was similar to or higher than that of cisplatin and carboplatin, with $IC_{50}$ values from 0.9 to $13.8{\mu}mol/L$ in a variety of ovarian cancer cells. The combination of lobaplatin with docetaxel yielded enhanced cytotoxic activity in vitro. In addition, in platinum - sensitive ovarian cancer xenografts, lobaplatin alone showed similar antitumor activity to cisplatin and carboplatin. Furthermore, lobaplatin alone or in combination with docetaxel exhibited significant activity in platinum - resistant ovarian cancer xenografts. These results indicate that the use of lobaplatin alone or in combination with docetaxel might be a rational and novel therapeutic strategy for ovarian cancer. Further clinical development of lobaplatin is clearly warranted.

Knockdown of UHRF1 by Lentivirus-mediated shRNA Inhibits Ovarian Cancer Cell Growth

  • Yan, Feng;Shao, Li-Jia;Hu, Xiao-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1343-1348
    • /
    • 2015
  • Human UHRF1 (ubiquitin-like PHD and RING finger domain-containing 1) has been reported to be over-expressed in many cancers, but its role in ovarian cancer remains elusive. Here, we determined whether knockdown of UHRF1 by lentivirus-mediated shRNA could inhibit ovarian cancer cell growth. Lentivirus-mediated short hairpin RNAs (lv-shRNAs-UHRF1) were designed to trigger the gene silencing RNA interference (RNAi) pathway. The efficiency of lentivirus-mediated shRNA infection into HO-8910 and HO-8910 PM cells was determined using fluorescence microscopy to observe lentivirus-mediated GFP expression and was confirmed to be over 80 percent. UHRF1 expression in infected HO-8910 and HO-8910 PM was evaluated by real-time PCR and Western blot analysis. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability; flow cytometry and Hoechst 33342 assay was applied to measure cell cycle arrest and apoptosis. Cell invasion was assessed using transwell chambers. Our results demonstrated that the loss of UHRF1 promoted HO-8910 and HO-8910 PM cell apoptosis, while inhibiting cell proliferation. In addition, UHRF1 knockdown significantly inhibited the invasion of human ovarian cancer cells. In the present study, we also showed that depleting HO-8910 cells of UHRF1 caused activation of the DNA damage response pathway, with the cell cycle arrested in G2/M-phase. The DNA damage response in cells depleted of UHRF1 was illustrated by phosphorylation of CHK (checkpoint kinase) 2 on Thr68, phosphorylation of CDC25 (cell division control 25) on Ser 216 and phosphorylation of CDK1 (cyclin-dependent kinase 1) on Tyr 15.