References
- Anderson GD (2002). Children versus adults: pharmacokinetic and adverse-effect differences. Epilepsia, Suppl 3, 53-9.
- Allfrey V G, Faulkner R., Mirsky A E, (1964). Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci USA, 51, 786-94. https://doi.org/10.1073/pnas.51.5.786
- Boring C, Squires T, Tong T (1992). Cancer statistics 1992. CA Cancer J Clin, 42, 19-38. https://doi.org/10.3322/canjclin.42.1.19
- Bellarosa D, Bressan A, Bigioni M, et al (2012). SAHA/ Vorinostat induces the expression of the CD137 receptor/ ligand system and enhances apoptosis mediated by soluble CD137 receptor in a human breast cancer cell line. Int J Oncol. doi: 10.3892/ijo.2012.1551.
- BDaud AI, Dawson J, DeConti RC, et al (2009). Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase inhibitor valproic acid in melanoma: translational and phase I/II clinical trial. Clin Cancer Res, 7, 2479-87.
- Blaheta R A., Michaelis M., Natsheh I, et al (2007). Valproic acid inhibits adhesion of vincristine- and cisplatin-resistant neuroblastoma tumour cells to endothelium. Br J Cancer, 96, 1699-706. https://doi.org/10.1038/sj.bjc.6603777
- Blaheta RA, Michaelis M, Natsheh I, et al (2007). Valproic acid inhibits adhesion of vincristine- and cisplatin-resistant neuroblastoma tumour cells to endothelium. Br J Cancer, 96, 1699-706. https://doi.org/10.1038/sj.bjc.6603777
- Cinatl JJ, Cinatl .J, Hernáiz Driever P, et al (1997). Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs, 8, 958-63. https://doi.org/10.1097/00001813-199711000-00007
- Chou C W, Wu M S, Huang W C, et al (2011). HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One, 3, e18087.
- Chen Y, Tsai YH, Tseng SH, (2011). Combined valproic acid and celecoxib treatment induced synergistic cytotoxicity and apoptosis in neuroblastoma cells. Anticancer Res, 6, 2231-9.
- Dreifuss F E, Langer D H, (1988). Side effects of valproate. Am J Med, Suppl 1A, 34-41.
- Dive C, Wyllie AH (1993). Apoptosis and cancer chemotherapy. Cancer Chemotherapy, 4, 21-56.
- Francisco R, Pérez-Perarnau A, Cortés C, et al (2012). Histone deacetylase inhibition induces apoptosis and autophagy in human neuroblastoma cells. Cancer Lett, 1, 42-52.
- Feng L, Pan M, Sun J, et al (2012). Histone deacetylase 3 inhibits expression of PUMA in gastric cancer cells. J Mol Med (Berl). [Epub ahead of print]
- Glaser K B, (2007). HDAC inhibitors: Clinical update and mechanismbased potential. Biochem Pharmacol, 74, 659-71. https://doi.org/10.1016/j.bcp.2007.04.007
- Hede K, (2006). Histone deacetylase inhibitors sit at crossroads of diet, aging, cancer. J Natl Cancer Inst, 9, 377-9.
- Kim M S, Blake M, Baek JH, et al (2003). Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res, 63, 7291-300.
- Leiva M, Moretti S, Soilihi H, et al (2012). Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL. Leukemia, 7, 1630-7.
- Lin CT, Lai HC, Lee HY (2008). Valproic acid resensitizes cisplatin-resistant ovarian cancer cells. Cancer Sci, 6, 1218-26.
- Marks PA, Rifkind RA, Richon VM, et al (2001). Histone deacetylases and cancer: causes and therapies. Nature, 1, 194-202.
- Morkve O, Laerum OD, (1991). Flow cytometric measurement of p53 protein expression and DNA content in paraffinembedded tissue from bronchial carcinomas. Cytometry, 5, 438-444.
- Osuka S, Takano S, Watanabe S, et al (2012). Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain. Neurol Med Chir (Tokyo), 4, 186-93.
- Ogryzko VV, Hira TH, Russanova VR, et al (1996). Human fibroblasts commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol, 16, 5210-8. https://doi.org/10.1128/MCB.16.9.5210
- Rodriguez-Menendez V, Gilardini A, Bossi M, et al (2008). Valproate protective effects on cisplatin-induced peripheral neuropathy: an in vitro and in vivo study. Anticancer Res, 1A, 335-42.
- Tumber A, Collins LS, Petersen K D, et al (2007). The histone deacetylase inhibitor PXD101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo. Cancer Chemother Pharmacol, 60, 275-83. https://doi.org/10.1007/s00280-006-0374-7
- Vallo S, Xi W, Hudak L, et al (2011). HDAC inhibition delays cell cycle progression of human bladder cancer cells in vitro. Anticancer Drugs, 10, 1002-9.
- Wedel S, Hudak L, Seibel JM, et al (2011). Impact of combined HDAC and MTOR inhibition on adhesion, migration and invasion of prostate cancer cells. Clin Exp Metastasis, 5, 479-91.
Cited by
- Histone deacetylases as targets for treatment of multiple diseases vol.124, pp.11, 2013, https://doi.org/10.1042/CS20120504
- Chloroquine and Valproic Acid Combined Treatment in Vitro has Enhanced Cytotoxicity in an Osteosarcoma Cell Line vol.14, pp.8, 2013, https://doi.org/10.7314/APJCP.2013.14.8.4651
- Suberoylanilide hydroxamic acid (vorinostat): its role on equine corneal fibrosis and matrix metalloproteinase activity vol.17, pp.14635216, 2013, https://doi.org/10.1111/vop.12129
- Valproic acid inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis vol.30, pp.6, 2013, https://doi.org/10.3892/or.2013.2747
- Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators vol.145, pp.3, 2014, https://doi.org/10.1007/s10549-014-2979-6
- Trichostatin A-induced Apoptosis is Mediated by Krüppel-like Factor 4 in Ovarian and Lung Cancer vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6581
- Biological Screening of Novel Derivatives of Valproic Acid for Anticancer and Antiangiogenic Properties vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7785
- Histones and Their Modifications in Ovarian Cancer – Drivers of Disease and Therapeutic Targets vol.4, pp.2234-943X, 2014, https://doi.org/10.3389/fonc.2014.00144
- Valproic acid inhibits the proliferation of SHSY5Y neuroblastoma cancer cells by downregulating URG4/URGCP and CCND1 gene expression vol.41, pp.7, 2014, https://doi.org/10.1007/s11033-014-3330-3
- Inhibition of Metastasis and Invasion of Ovarian Cancer Cells by Crude Polysaccharides from Rosa Roxburghii Tratt in Vitro vol.15, pp.23, 2015, https://doi.org/10.7314/APJCP.2014.15.23.10351
- The HDACi Panobinostat Shows Growth Inhibition Both In Vitro and in a Bioluminescent Orthotopic Surgical Xenograft Model of Ovarian Cancer vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0158208
- Valproic acid (VPA) inhibits the epithelial–mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4 vol.142, pp.1, 2016, https://doi.org/10.1007/s00432-015-2020-4
- Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy vol.20, pp.4, 2016, https://doi.org/10.1111/jcmm.12771
- Valproic acid exhibits different cell growth arrest effect in three HPV-positive/negative cervical cancer cells and possibly via inducing Notch1 cleavage and E6 downregulation vol.49, pp.1, 2016, https://doi.org/10.3892/ijo.2016.3508
- Valproic acid inhibits epithelial-mesenchymal transition in renal cell carcinoma by decreasing SMAD4 expression vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7394