DOI QR코드

DOI QR Code

Overexpression of Profilin 1 Inhibited Ovarian Tumor Cell Growth and Migration

Profilin-1 과발현에 의한 난소암 세포 성장 및 이동 저해 효능 연구

  • 이승훈 (용인대학교 생명과학과)
  • Received : 2016.08.16
  • Accepted : 2016.10.19
  • Published : 2017.01.30

Abstract

Abnormal actin remodeling is a typical characteristic of tumor cells. Thymosin ${\beta}_{10}$ (TB10) and profilin-1 (PFN-1) are actin-binding proteins and essential regulators of actin polymerization. We previously showed that TB10 induced death in ovarian cancer cells by sequestering F-actin, but the underlying mechanisms of this induction have not been explored. In this study, we identified TB10 as a novel regulator of PFN-1 and demonstrated its novel function as a tumor suppressor in ovarian cancer cell lines. The present study investigated protein expression profiles through polyacrylamide gel electrophoresis (PAGE) and liquid chromatography-mass spectroscopy (LC-MS/MS) in SKOV3 cells, an ovarian cancer cell line, that were transiently transfected with TB10. PFN-1 was highly overexpressed in response to TB10, and overexpression of PFN-1 resulted in inhibition of cell proliferation and migration and promotion of cellular apoptosis in ovarian cancer cells. Furthermore, transiently transfected PFN-1 appeared to deactivate the Erk signaling pathway, followed by decreased expression of Elk-1 and Egr-1 in human ovarian cancer cells. Interestingly, PFN-1 did not affect the activation of Akt. The results demonstrated that PFN-1 induced apoptotic cell death and inhibited proliferation and migration in ovarian cancer cells, suggesting that PFN-1 may be valuable in anti-cancer therapy.

비정상적 액틴의 재구성은 암세포의 대표적 특성이다. Thymosin ${\beta}_{10}$ (TB10)과 Profilin-1 (PFN-1)은 액틴중합조절에 필수적인 단백질이다. 이전의 연구에서 본 연구진은 TB10이 F-actin의 구조를 파괴하여 난소 암 세포의 사멸을 일으킨다는 사실을 보고하였으나 그 기전에 대하여 보고 된 바는 아직까지 없다. 본 연구에서는 TB10에 의하여 PFN-1의 발현이 조절되며, PFN-1의 난소 암 저해 유전자로서의 새로운 기능을 보고하였다. 우선 난소암세포주인 SKOV3 세포에서 TB10에 의하여 발현이 조절되는 단백질들을 전기영동법과 liquid chromatography-mass spectroscopy (LC-MS/MS) 방법을 통하여 분석하였다. 그 결과 PFN-1이 TB10에 의하여 발현이 급격히 증가되는 단백질로 동정되었으며, 이 PFN-1을 난소 암 세포주인 SKOV3에 과발현 시켰을 때 암세포의 증식과 이동을 저해하고 암세포 사멸을 유도하였다. 또한 이 결과는 PFN-1에 의하여 Erk 신호전달기전이 저해되고 부수적으로 Elk-1과 Egr-1의 발현이 저해 됨으로써 유도될 가능성을 보여준다. 결론적으로, PFN-1이 난소암세포의 성장과 이동을 저해함과 동시에 세포사멸을 일으키므로 난소 암 치료에 유용하게 이용될 가능성이 높다.

Keywords

References

  1. Bast, R. C. Jr. 2010. Biomarkers for ovarian cancer: new technologies and targets to address persistently unmet needs. Cancer Biomark. 8, 161-166.
  2. Bubb, M. R., Yarmola, E. G., Gibson, B. G. and Southwick, F. S. 2003. Depolymerization of actin filaments by profilin. Effects of profilin on capping protein function. J. Biol. Chem. 278, 24629-24635. https://doi.org/10.1074/jbc.M302796200
  3. Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F. and Lindberg, U. 1977. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465-483. https://doi.org/10.1016/0022-2836(77)90166-8
  4. Chen, H., Bernstein, B. W. and Bamburg, J. R. 2000. Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25, 19-23. https://doi.org/10.1016/S0968-0004(99)01511-X
  5. Das, T., Bae, Y. H., Wells, A. and Roy, P. 2009. Profilin-1 overexpression upregulates PTEN and suppresses AKT activation in breast cancer cells. J. Cell Physiol. 218, 436-443. https://doi.org/10.1002/jcp.21618
  6. Ding, Z., Bae, Y. H. and Roy, P. 2012. Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adh. Migr. 6, 442-449. https://doi.org/10.4161/cam.21832
  7. Ding, Z., Joy, M., Bhargava, R., Gunsaulus, M., Lakshman, N., Miron-Mendoza, M., Petroll, M., Condeelis, J., Wells, A. and Roy, P. 2014. Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis. Oncogene 33, 2065-2074. https://doi.org/10.1038/onc.2013.166
  8. Erickson-Viitanen, S., Ruggieri, S., Natalini, P. and Horecker, B. L. 1983. Thymosin beta 10, a new analog of thymosin beta 4 in mammalian tissues. Arch. Biochem. Biophys. 225, 407-413. https://doi.org/10.1016/0003-9861(83)90047-4
  9. Gronborg, M., Kristiansen T. Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O. N., Hruban, R. H., Goggins, M. G., Maitra, A. and Pandey, A. 2006. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell Proteomics 5, 157-171. https://doi.org/10.1074/mcp.M500178-MCP200
  10. Hall, A. K. 1994. Molecular interactions between G-actin, DNase I and the beta-thymosins in apoptosis: a hypothesis. Med. Hypotheses. 43, 125-31. https://doi.org/10.1016/0306-9877(94)90135-X
  11. Hoskins, W. J. 1993. Surgical staging and cytoreductive surgery of epithelial ovarian cancer. Cancer 71(Suppl), 1534-1540. https://doi.org/10.1002/cncr.2820710420
  12. Janke, J., Schluter, K., Jandrig, B., Theile, M., Kolble, K., Arnold, W., Grinstein, E., Schwartz, A., Estevez-Schwarz, L., Schlag, P. M., Jockusch, B. M. and Scherneck, S. 2000. Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin1. J. Exp. Med. 191, 1675-1686. https://doi.org/10.1084/jem.191.10.1675
  13. Kullmann, J. A., Neumeyer, A., Wickertsheim, I., Bottcher, R. T., Costell, M., Deitmer, J. W., Witke, W., Friauf, E. and Rust, M. B. 2012. Purkinje cell loss and motor coordination defects in profilin1 mutant mice. Neuroscience 223, 355-364. https://doi.org/10.1016/j.neuroscience.2012.07.055
  14. Lee, S. H., Zhang, W., Choi, J. J., Cho, Y. S., Oh, S. H., Kim, J. W., Hu, L., Xu, J., Liu, J. and Lee, J. H. 2001. Overexpression of the thymosin beta-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene 20, 6700-6706. https://doi.org/10.1038/sj.onc.1204683
  15. Minamida, S., Iwamura, M., Kodera, Y., Kawashima, Y., Ikeda, M., Okusa, H., Fujita, T., Maeda, T. and Baba, S. 2011. Profilin 1 overexpression in renal cell carcinoma. Int. J. Urol. 18, 63-71. https://doi.org/10.1111/j.1442-2042.2010.02670.x
  16. Pantaloni, D. and Carlier, M. F. 1993. How profilin promotes actin filament assembly in the presence of thymosin beta-4. Cell 75, 1007-1014. https://doi.org/10.1016/0092-8674(93)90544-Z
  17. Pollard, T. D. and Cooper, J. A. 1986. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55, 987-1035. https://doi.org/10.1146/annurev.bi.55.070186.005011
  18. Safer, D. and Nachmias, V. T. 1994. Beta thymosins as actin binding peptides. Bioessays 16, 473-379. https://doi.org/10.1002/bies.950160706
  19. Theriot, J. A. and Mitchison, T. J. 1993. The three faces of profilin. Cell 75, 835-838. https://doi.org/10.1016/0092-8674(93)90527-W
  20. Witke, W. 2004. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 14, 461-469. https://doi.org/10.1016/j.tcb.2004.07.003
  21. Wittenmayer, N., Burkhard, J., Martin, R., Kathrin, S., Wolfgang, A., Wolfgang, H., Siegfried, S. and Brigitte, M. J. 2004. Tumor suppressor activity of profilin requires a functional actin binding site. Mol. Biol. Cell 15, 1600-1608. https://doi.org/10.1091/mbc.E03-12-0873
  22. Wu, N., Zhang, W., Yang, Y., Liang, Y. L., Wang, L. Y., Jin, J. W., Cai, X. M. and Zha, X. L. 2006. Profilin 1 obtained by proteomic analysis in all-trans retinoic acid-treated hepatocarcinoma cell lines is involved in inhibition of cell proliferation and migration. Proteomics 6, 6095-6106. https://doi.org/10.1002/pmic.200500321
  23. Yu, F. X., Lin, S. C., Morrison-Bogorad, M., Atkinson, M. A. and Yin, H. L. 1993. Thymosin beta 10 and thymosin beta 4 are both actin monomer sequestering proteins. J. Biol. Chem. 268, 502-509.
  24. Zoidakis, J., Makridakis, M., Zerefos, P. G., Bitsika, V., Esteban, S., Frantzi, M., Stravodimos, K., Anagnou, N. P., Roubelakis, M. G., Sanchez-Carbayo, M. and Vlahou, A. 2012. Profilin 1 is a potential biomarker for bladder cancer aggressiveness. Mol. Cell Proteomics 11, M111.009449. Epub. https://doi.org/10.1074/mcp.M111.009449
  25. Zou, L., Ding, Z. and Roy, P. 2010. Profilin-1 overexpression inhibits proliferation of MDA-MB-231 breast cancer cells partly through p27kip1 upregulation. J. Cell Physiol. 223, 623-629.