• 제목/요약/키워드: osmotic

검색결과 815건 처리시간 0.027초

인삼추출물이 생체 세포막 및 artificial lipid monolayer에 미치는 영향 (Effects of Ginseng Extract on Biological Cell Membrane and Artificial Lipid Monolayer)

  • 백광세;이철영;이경남;송선옥;강두희
    • The Korean Journal of Physiology
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 1976
  • The Present study was conducted to investigate the effects of Ginseng extract on the tension-area curve for stearic acid monolayer. At the same time, the effects of Ginseng extract on osmotic and mechanical fragility of human red cells and histamine release from rabbit leukocytes were studied, The results are summarized as follows. 1. The Ginseng alcohol extract was found to expand liquid expanded phase of stearic acid monolayer, thus it is speculated that this agent may be acting as a surface active substance. 2. Osmotic hemolysis was inhibited by the Ginseng alcohol extract and the same effect was also observed in the presence of Ginseng saponin. However, the Ginseng alcohol extract was found to decrease hematocrit ratio of the RBC suspension, therefore, the inhibition of the osmotic hemolysis by this agent may be secondary effect to the reduced cell volume. 3. The mechanical hemolysis was also inhibited by the Ginseng alcohol extract but the inhibition was independent of changes in hematocrit ratio. 4. Histamine release from rabbit leukocytes was significantly increased in vitro in the presence of the Ginseng alcohol extract.(p<0.05)

  • PDF

Microstructure and shear modulus in concentrated dispersions of bidisperse charged spherical colloids

  • Chun, Myung-Suk;Lee, Sangwoo;Lee, Tae-Seok;Cho, Jae-Seol
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.17-26
    • /
    • 2004
  • We examine rigorous computations on microstructural as well as rheological properties of concentrated dispersions of bidisperse colloids. The NVT Monte Carlo simulation is applied to obtain the radial distribution function for the concentrated system. The long-range electrostatic interactions between dissimilar spherical colloids are determined using the singularity method, which provides explicit solutions to the linearized electrostatic field. The increasing trend of osmotic pressure with increasing total particle concentration is reduced as the concentration ratio between large and small particles is increased. From the estimation of total structure factor, we observe the strong correlations developed between dissimilar spheres. As the particle concentration increases at a given ionic strength, the magnitude of the first peak in structure factors increases and also moves to higher wave number values. The increase of electrostatic interaction between same charged particles caused by the Debye screening effect provides an increase in both the osmotic pressure and the shear modulus. The higher volume fraction ratio providing larger interparticle spacing yields decreasing high frequency limit of the shear modulus, due to decreasing the particle interaction energy.

Targeting the Osmotic Stress Response for Strain Improvement of an Industrial Producer of Secondary Metabolites

  • Godinez, Octavio;Dyson, Paul;del Sol, Ricardo;Barrios-Gonzalez, Javier;Millan-Pacheco, Cesar;Mejia, Armando
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1787-1795
    • /
    • 2015
  • The transition from primary to secondary metabolism in antibiotic-producing Streptomyces correlates with expression of genes involved in stress responses. Consequently, regulatory pathways that regulate specific stress responses are potential targets to manipulate to increase antibiotic titers. In this study, genes encoding key proteins involved in regulation of the osmotic stress response in Streptomyces avermitilis, the industrial producer of avermectins, are investigated as targets. Disruption of either osaBSa, encoding a response regulator protein, or osaCSa, encoding a multidomain regulator of the alternative sigma factor SigB, led to increased production of both oligomycin, by up to 200%, and avermectin, by up to 37%. The mutations also conditionally affected morphological development; under osmotic stress, the mutants were unable to erect an aerial mycelium. In addition, we demonstrate the delivery of DNA into a streptomycete using biolistics. The data reveal that information on stress regulatory responses can be integrated in rational strain improvement to improve yields of bioactive secondary metabolites.

Role of Osmotic and Salt Stress in the Expression of Erythrose Reductase in Candida magnoliae

  • Park, Eun-Hee;Lee, Ha-Yeon;Ryu, Yeon-Woo;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권10호
    • /
    • pp.1064-1068
    • /
    • 2011
  • The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG-3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and $H_2O_2$, respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugarindependent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.

A Ferroxidase, Cfo1, Regulates Diverse Environmental Stress Responses of Cryptococcus neoformans through the HOG Pathway

  • Lee, Kyung-Tae;Lee, Jang-Won;Lee, Dohyun;Jung, Won-Hee;Bahn, Yong-Sun
    • Mycobiology
    • /
    • 제42권2호
    • /
    • pp.152-157
    • /
    • 2014
  • The iron uptake and utilization pathways play a critical role in allowing human pathogens, including Cryptococcus neoformans, the causative agent of fatal meningoencephalitis, to survive within the mammalian body by competing with the host for iron. Here we show that the iron regulon is also required for diverse environmental stress responses and that in C. neoformans, it is regulated by the high-osmolarity glycerol response (HOG) pathway. Between CFO1 and CFO2, two ferroxidase genes in the iron regulon, CFO1 but not CFO2 was induced during oxidative and osmotic stress. Interestingly, we found that the HOG pathway repressed basal expression of both CFO1 and CFO2. Furthermore, when the HOG pathway was blocked, CFO2 also responded to oxidative and osmotic stress and the response of CFO1 was increased. We also established that CFO1 plays a major role in responding and adapting to diverse environmental stresses, including oxidative and genotoxic damage, osmotic fluctuations, heavy metal stress, and stress induced by cell membrane destabilizers. Therefore, our findings indicate that in C. neoformans, the iron uptake and utilization pathways are not only required for iron acquisition and survival, but also play a significant role in the environmental stress response through crosstalk with the HOG pathway.

Superoxide Dismutase와 Ascorbate Peroxidase를 엽록체에 과발현하는 형질전환 담배의 수분스트레스에 대한 반응 (Responses of Transgenic Tobacco Plants Overexpressing Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Water Stress)

  • 최선미;권석윤;곽상수;박용목
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.79-84
    • /
    • 2001
  • To assess resistance of transgenic tobacco plants which overexpress superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts to water stress, changes in leaf water potential, turgor potential, stomatal conductance and transpiration rate were measured. Leaf water potential in all plants remained high up to day 4 after withholding water but thereafter decreased markedly. In spite of a remarkable decrease in leaf water potential, some of transgenic plants maintained higher turgor potential compared with control plant on day 12. In particular, the transgenic plant expressing MnSOD showed an outstanding maintenance in turgor pressure by osmotic adjustment throughout the experiment, resulting in high stomatal conductance and transpiration rate. However, among transgenic plants, osmotic potential was reduced more effectively in multiple transformants such as the double transformant expressing both MnSOD and APX, and the triple transformant expressing CuznSOD, MnSOD and APX than single transformants. Consequently, further research is needed to get general agreement on the tolerance of transgenic plants to water stress at different growth stages for each transgenic plant.

  • PDF

건조방울토마토 제조와 품질 특성 (Development and Quality of Dried Cherry-Tomatoes)

  • 윤경영;김미현;이광희;신승렬
    • 한국식품영양과학회지
    • /
    • 제28권6호
    • /
    • pp.1283-1287
    • /
    • 1999
  • This study was carried out to develop new processed food from cherry tomatoes. The dried cherry tomatoes were prepared by using a sequence of osmotic dehydration, air drying, vacuum drying and freeze drying. The moisture contents of dried cherry tomato products by nontreatment and osmosis treatment were about 11~13% and 7.5~ 10%, respectively. The vitamin C contents of the dried product after osmotic dehydration were higher than those of the dried products by nontreatment. The vitamin C content of the freezing dried product was the highest of the others. The vacuum dried product by nontreatment was retained color of fresh fruit in the change of color. The ΔE value of the air dried product was lower than those of the others. As a result to microscopic analysis, fresh cherry tomato was observed regular tissue, while cherry tomato treated by osmosis was observed a cell collapse following the loss of water. The dried product had cell shrinkage and dense tissue. And the cell wall of dried products after osmotic dehydration were much more damage than those of nontreatment dried product. The palatability of the air dried product was the best of three drying methods. The dried cherry tomatoes treated by osmosis were superior to the dried cherry tomatoes by nontreatment.

  • PDF

The effects of salt stress and prime on germination improvement and seedling growth of Calotropis procera L. seeds

  • Taghvaei, Mansour;Khaef, Nazila;Sadeghi, Hossein
    • Journal of Ecology and Environment
    • /
    • 제35권2호
    • /
    • pp.73-78
    • /
    • 2012
  • $Calotropis$ $procera$ L. is a perennial shrub distributed in saline areas of deserts of South Asia. Salt stress is a very challenging subject in arid and semi-arid areas. Germination stage is very sensitive and many plants do not germinate in saline soil. The objective of this study was identifying the salinity effect on seed germination of $Calotropis$ $procera$ L. The experimental design was a complete randomized block design with NaCl and $CaCl_2$ at five levels of isobar concentrations: 0.0, -0.01, -0.05, -0.1, and -0.15 MPa. Osmotic potential had significant effects ($P$ < 0.01) on germination percentage, germination rate, shoot length, root length, and seedling dry weight. All seedling characteristics decreased with decrease in osmotic potential. Shoot length and root length decreased more than the seedling characteristics. Germination was completely inhibited in -0.1 Mpa. Priming with NaCl and $CaCl_2$ (-0.1 MPa) for four days had significant effects ($P$ < 0.01) on the germination percentages. Priming improved the seedling characteristics in all samples, especially in -0.05 Mpa, but a decrease with decrease in osmotic potential.

Electrodeposition of Mn-Ni Oxide/PEDOT and Mn-Ni-Ru Oxide/PEDOT Films on Carbon Paper for Electro-osmotic Pump Electrode

  • Baek, Jaewook;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권2호
    • /
    • pp.93-98
    • /
    • 2018
  • $MnO_2$, a metal oxide used as an electrode material in electrochemical capacitors (EDLCs), has been applied in binary oxide and conducting polymer hybrid electrodes to increase their stability and capacitance. We developed a method for electrodepositing Mn-Ni oxide/PANI, Mn-Ni oxide/PEDOT, and Mn-Ni-Ru oxide/PEDOT films on carbon paper in a single step using a mixed bath. Mn-Ni oxide/PEDOT and Mn-Ni-Ru oxide/PEDOT electrodes used in an electro-osmotic pump (EOP) have shown better efficiency compared to Mn-Ni oxide and Mn-Ni oxide/PANI electrodes through testing in water as a pumping solution. EOP using a Mn-Ni-Ru oxide/PEDOT electrode was also tested in a 0.5 mM $Li_2SO_4$ solution as a pumping solution to confirm the effect of the $Li^+$ insertion/de-insertion reaction of Ruthenium oxide on the EOP. Experimental results show that the flow rate increases with the increase in current in a 0.5 mM $Li_2SO_4$ solution compared to that obtained when water was used as a pumping solution.

형질전환 담배의 내건성 개선 (Improvement of Drought Tolerance in Transgenic Tobacco Plant)

  • 박용목
    • 한국환경과학회지
    • /
    • 제25권1호
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.