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Abstract

We examine rigorous computations on microstructural as well as rheological properties of concentrated dis-
persions of bidisperse colloids. The NVT Monte Carlo simulation is applied to obtain the radial distribution
function for the concentrated system. The long-range electrostatic interactions between dissimilar spherical
colloids are determined using the singularity method, which provides explicit solutions to the linearized
electrostatic field. The increasing trend of osmotic pressure with increasing total particle concentration is
reduced as the concentration ratio between large and small particles is increased. From the estimation of
total structure factor, we observe the strong correlations developed between dissimilar spheres. As the par-
ticle concentration increases at a given ionic strength, the magnitude of the first peak in structure factors
increases and also moves to higher wave number values. The increase of electrostatic interaction between
same charged particles caused by the Debye screening effect provides an increase in both the osmotic pres-
sure and the shear modulus. The higher volume fraction ratio providing larger interparticle spacing yields
decreasing high frequency limit of the shear modulus, due to decreasing the particle interaction energy.

Keywords : bidisperse colloid, radial distribution function, osmotic pressure, structure factor, shear modulus,

suspension rheology

L. Introduction

Concentrated colloidal suspensions depart from New-
tonian behavior. They behave as solids requiring a finite
stress, before deforming continuously as a liquid. The
qualitative nature of the rheological response is intimately
related to the microstructural property, where the colloidal
interactions responsible for non-Newtonian or non-
Hookean behavior at rest often dominate the response in
lows. Mixtures of concentrated colloidal suspensions are
of substantial fundamental and practical significance in
the processing of complex fluids, such as nano-particle
dispersion, biological fluids, and particulate processing
(Russel et al., 1989; Wagner and Klein, 1991; Larson,

999).

Since the microstructural analysis of multiparticle inter-
actions is not succinct, most of the relevant studies have
been confined to dilute systems. It was reported that the
osmotic pressure for a wide concentration range of proteins
or other electrostatically stabilized colloids may be cal-
culated accurately via use of extended Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory (Bowen and Williams,
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1996; Bowen et al., 1999). They examined the application
of osmotic pressure in the calculation of the gradient dif-
fusion coefficient from the general Stokes-Einstein equa-
tion, where their model takes into account multiparticle
electrostatic interactions with the nonlinear Poisson-Bolt-
zmann (P-B) field, London-van der Waals forces, and the
entropic pressure. Later, they compared the particle con-
centration dependency upon the thermodynamic coeffi-
cients determined by dilute Iimit, hypernetted-chain
closure, radial distribution method, and cell model calcu-
lation (Bowen et al., 2000).

The monodisperse colloidal suspension is a well-estab-
lished model for theoretical investigations. However, this
ideal system is hardly found in practical situations. The
distribution of particle size explicitly affects the micro-
structure of colloidal dispersions, and this behavior
becomes more significant with an increase of the particle
concentration as shown in Fig. 1. The difficulty of the rel-
evant analytical solution will be dramatically increased,
even though it is a bidisperse problem, i.e., bimodal mix-
tures of species with different sizes or different size dis-
tributions.

The microstructural properties of a colloidal dispersion
can be studied by Monte Carlo simulations, and they pro-
vide an exact answer for the given model within statistical
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Fig. 1. Schematic of bimodal colloid dispersion in the shear flow.

uncertainty. Very recently, Chun and Bowen (2004) suc-
cessfully determined the radial distribution function by
employing the Monte Carlo simulation for bidisperse
charged colloids with higher concentration. In order to rec-
ognize the usefulness of their study, simulation results were
compared with results from theoretical work obtained
using an integral equation method. In their investigation,
the rigorous calculation of the long-range electrostatic
interaction with the linearized P-B field was performed
using a singularity method, which was originally proposed
by Phillips (1995) as a useful scheme for multisphere sys-
tems. This method is similar to that described by Dabros
(1985) for use in low-Reynolds-number hydrodynamics
problem.

In this study, we obtain the radial distribution function
for bidisperse colloidal suspension performing the Metrop-
olis Monte Carlo simulation. The long-range force due to
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the electrostatic repulsion between dissimilar spheres is
considered, although the colloidal interactions originate
from various forces. For example, the van der Waals dis-
persion forces between two dissimilar approaching spheres
act over a relatively long range. Utilizing the radial dis-
tribution function, both the osmotic pressure and static
structure factor are estimated for suspensions of both
uncharged and charged cases. The shear modulus is an
important physical property of viscoelastic materials. From
the estimation of shear modulus, its concentration depen-
dency is investigated as a function of the volume fraction
ratio of large to small spheres and we discuss the encoun-
tered phenomena.

2. Radial distribution function and microstruc-
ture of concentrated dispersion

2.1. Osmotic pressure from Monte Carlo simula-
tions
We start with the osmotic pressure of a colloidal sus-
pension which provides a quantification of the interactions
between colloids in a concentrated system. The osmotic
pressure I1 is related to the thermodynamic coefficient S as
follows (Bowen et al., 2000)

_ KTTIO)T
S(C)—47m3[ 3¢ ] )

where C is the particle concentration in terms of volume
fraction, kT the Boltzmann thermal energy, and a the
sphere radius. Note that the coefficient S(C) coincides with
the structure factor of the suspension at the zero scattering
vector. The osmotic pressure is expressed in the form of
virial equation as (Bowen and Williams, 1996)

11(C) = 3L c(1+ 4,0+ A,C+ ) )
47a
where A, and A; are osmotic virial coefficients. It is pos-
sible to derive the analytical solution in power series of the

particle concentration as
S(C) = 1-24,C+(243-3A)C*+O(C>). (3)

With the radial distribution function g(s), A, is represented
by

A, = zzgj:[l—g(s)]szds. 4)

For the center-to-center separation distance s, the surface-
to-surface distance s’ corresponds to s —(a;+ a,) for dis-
similar spheres, whereas s’ equals to s-2g, for two large
spheres and s-Za, for two small spheres.

Many investigations exist for the analysis on the radial
distribution function. For a dilute suspension, the radial
distribution function is simply given by the Boltzmann dis-
tribution (Chun and Bowen, 2004)
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off-center singularity

surface point j

sphere § sphere [

Fig. 2. Pair interaction between two charged spherical colloids /
(large) and s (small) of radii ¢; and a,, where surface
points spaced at /32 rads in 8 and ¢ directions are shown
on particles for estimation of electrostatic potential.

8(s) = exp-E82) )

Here, E(s) is the pairwise interaction energy between
spheres (e.g., large-large, large-small, small-small) sepa-
rated by a distance s. We represent E(s) of uncharged hard
spheres by a Lennard-Jones 6:12 potential. For charged
spheres as shown in Fig. 2, E(s) is obtained applying the
singularity method presented in Appendix A.

Once the effect of long-range colloidal interactions is
cbsent in the concentrated suspension, the radial distribu-
tion function can be computed by integral equations, per-
tarbation methods, and Monte Carlo simulations (Russel et
¢l., 1989). Among these, the Monte Carlo simulations
enable the prediction of the charged suspension over the
full range of particle concentrations.

z.2. Static structure factor

The important microstructural information can be
ecquired by means of the structure factor that gives all
I>ngth scale data (Ottewill et al., 1995; Ottewill, 1996).
Considering the phase difference between the scattered
beam from two particles at r/ and ry, the scattering vector
() has a magnitude (47/f)sin(6/2), where f is the wave-
I:ngth in the dispersion medium, and & the scattering
engle. The static structure factor S(Q) for a bidisperse sus-
pension can be directly obtained from the g(s), defined as

N

3

$(@) =13 3 (expliQ- (-ri) (6)

i=lj=1
where N (= N, + N,) denotes the number of spheres and the

trackets mean an ensemble average. After spherically-
averaging, Eq. (6) yields

SAQ) = 51X+“—”3QE”U: [g(s)—1]ssinQsds (7
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where & is the Kronecker delta function, both »; and n, the
number densities of each sphere, and Q the wave number.
The g(s) for bidisperse suspension, which takes three kinds
of particle correlations simultaneously, measures the rel-
ative density of neighboring spheres at a distance s from a
reference sphere. It is known that the Fourier transforma-
tion from Q-space (reciprocal space) to real space gives
8(s).

3. Shear modulus and high frequency limit

We sketch some of the underlying rheology associated
with viscoelastic materials. In a combination of a New-
tonian fluid and a Hookean solid, the shear stress tensor
under shear rate ¥ is defined as (Russel et al., 1989)

T= n'(w)ysinwt—ﬂw@ycosw. (8)

Here, n'(w) and G'(w) are the dynamic viscosity and the
shear modulus, respectively, which are varying periodically
in time t with the frequency @. The first term of the viscous
response is in phase with the velocity gradient, while the
second term of the elastic response is in phase with the
strain but 90° out of phase with the velocity gradient. For
viscoelastic fluids, mechanical analogs provide the fol-
lowings

TR TP
n__ Mo
= . )
o 1 +(Aw)
t 2
G MLZ (10)
G- 1+(Aw)
rIO_Tl'w
A==t= 11
G (11)

where A is a single relaxation time, G. (= lim G') the high
frequency limit of the shear modulus, 7, (= ({)imon') ,and n'.,
(= lim ") low and high frequency limits of the dynamic

viscosity, respectively.

We analyze the linear viscoelastic response of concen-
trated dispersions, focusing on the high frequency limit of
the shear modulus. The G'.. is important to calculate the
shear modulus G, since the shear viscosity for complex
fluids such as colloidal dispersions at high frequency van-
ishes and the shear modulus is completely determined by
interparticle forces (Wagner and Klein, 1991). The
dynamic shear modulus for a high-frequency (or very
sudden) disturbance G'., was identified as a function of
the radial distribution function g(s), the interaction
energy E, and the particle number density n (Zwanzig
and Mountain, 1965; Evans and Lips, 1990; Lionberger
and Russel, 1994)
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Fig. 3. Dimensionless energy profiles for particle-particle inter-
actions for several inverse Debye lengths with constant
surface-charge boundary conditions and ¢; = 20 nm and a;

= 10nm. Dotted curves obtained by analytic approxi-
mation correspond to each inverse Debye length.

.o 27 2 d[ sdE(s)
Gm_an+15n 0g(s)a,sl:s T ]ds. (12)

Eq. (12) involves two derivatives of E(s), because the first
one gives a force, and the second one gives the coefficient
of the linear relationship between force and deflection,
which is proportional to the modulus.

4. Results and discussion

4.1. Long-range interaction energy

The interaction energy can be computed as addressed in
Appendix A. Fig. 3 shows that the interaction energy is
changed by the variation of solution ionic strength, where
the Debye length k' (nm) for aqueous solutions of monov-
alent electrolytes at 25°C is given by (solution ionic
strength (Mol))"*/3.278. The inverse Debye lengths non-
dimensionalized with sphere 1 (= ka,) correspond to 0.292,
0.656, 2.06, and 20.6 for ionic strengths of 0.02, 0.1, 1.0,
and 100 mMol KCI electrolyte concentration. The elec-
trostatic interaction energy between two dissimilar spheres
has an equal dimensionless surface potential of 1. With
decreasing solution ionic strength, the interaction energy
increases according to the Debye screening effect. We also
recognize that the interaction energy increases as the
sphere radii ratio (= ay/a,) increases. Our results are com-
pared to the analytical approximate resuits by employing
the leading term of the linear superposition with respect to
unperturbed potentials, viz, (Ohshima, 1995),

EGNs) = dmaa,e, , SR, (13)

20

It is obvious that the analytical approximate results
become unreliable as two bodies approach more closely.

4.2. Radial distribution function

Once the monodisperse system with hard spheres is
treated, the radial distribution functions g are known ana-
lytically in the Percus-Yevick approximation (Russel et al.,
1989). The Metropolis Monte Carlo simulations sample a
canonical ensemble for which the number of particles, tem-
perature, and volume are constant. In this NVT process, the
probability governing the random particle displacement is
justified as min[1, exp(—AE/kT)], where AE=E,,,— E, for
the i-th step. If the random number is less than this prob-
ability, the respective moves are accepted; otherwise the
moves are rejected. During the simulations for charged
case, the total energies after the particle displacements are
evaluated by using a pairwise additive principle with
respect to interparticle pair interactions, given as

NN Ny, N N, N
Emtal = Z Z El-l(s) + Z Z EI—.\‘(S) + Z Z Es—s(s)' (14)
j=i+li=l jeitli=l j=ivli=l

We determine the instantaneous interaction energy at arbi-
trary sphere-sphere separation distances by interpolating
with Newton-Gregory forward polynomials of degree 7,
where the number of tabulated points for the interpolation
ranged from 20 to 28. Interpolating with polynomials was
checked by comparing with fitted energy profiles that
decay exponentially as functions of the separation distance
and the regression coefficients.

In the present study, spheres with a total number of 200 —
400 are introduced in a simulation box. For the particle dis-
placements, the sizes of the random steps in the three coor-
dinate directions are chosen to be 50% of the corresponding
dimension of the periodic unit cell. The total volume fraction
C equals the addition of volume fractions for large spheres
C, and small spheres C.. Discarding non-equilibrium con-
figurations and production configurations are taken to be
about 2x 10* and 4 x 104, respectively. For an initial con-
dition, spheres are arranged in face-centered cubic lattices.

We implement a computation of the radial distribution
function using a virial expansion based on the integral
equation method to compare with Monte Carlo simulation
results. Solving the correlation function by the Ornstein-
Zernike equation and the Percus-Yevick closure, we can
then proceed the particle concentration profile C(s) with
the particle concentration in the bulk C, expressed as (Chun
and Bowen, 2004)

g(s) = CB8) - exp(—@)(uc ¥ (5)+...) (15)
C kT
where the first virial coefficient is defined as

Y(s) = [[exp(=E(s)/(kT)) - 11[exp(—E(r,r,)/kT)—kT)dr,.
(16)
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i#ig. 4. Mixed radial distribution functions of uncharged as well
as charged spheres with ¢;=20nm (xg,=2.06) and a, =
10 nm (xa, = 1.03) for different volume fraction ratio C/
C, at C=0.1.

‘n Eq. (16), one sphere (sphere 1) is at position r, a distance
s from a second sphere, and a third sphere is at position r,.
'The integral is over all space around one sphere, and the
Mayer function exp(—E(r,r;)}kT)—1 depends on the
sphere-sphere interaction. The Y, is defined in terms of
configuration-space integrals that involve interactions both
between sphere 1 and 2 and between sphere 1 and 3. Each
‘ndividual g(s) is estimated for all cases, in which three
spheres are alternately assigned with possible combinations
of large and small ones. Overall g(s) can be obtained by
‘weighting the individual g(s) with corresponding possi-
hility of choosing. For the case of monodisperse system, it
‘s known that only the first-order effect of C can be rea-
sonably considered without great loss of accuracy (Glandt,
1981). Chun and Bowen (2004) provided that a fairly
agreement between the radial distribution function from
Monte Carlo simulations and corresponding predictions
“rom the virial expansions is shown at the lower particle
concentration with the lower C/C,. The disagreement is
developed, however, once the particle concentration
‘ncreases at lower C/C, or the C/C, increases at lower par-
1icle concentration.

Fig. 4 shows the mixed radial distribution function g(s)
“or a bidispserse suspension of hard spheres with different
volume fraction ratio C/C, at the total volume fraction of
1).1. As the volume fraction ratio increases, the g(s) profile
has the splitting shape at the distance positions of 20, 30,
and 40 nm for the interactions of small-small, small-large,
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Fig. 5. Independent partial radial distribution functions obtained
by dividing each correlation, @, =20 nm (xw, = 2.06), a, =
10 nm (xa,=1.03), and C/C,=5.33.

and large-large spheres. The g(s) of charged spheres with
equal surface potential is also provided. We point out that,
compared to the case of uncharged spheres, the repulsive
interactions evidently decrease the density near the sphere.
As shown in Fig. 5, it is possible to obtain the partial g(s),
i.e., individual g(s) for large-large, large-small, and small-
small.

4.3. Structure factor and shear modulus

When the particle concentration is zero, the coefficient A,
of Eq. (4) has a maximum value corresponding to the
dilute asymptote A4,, and it decreases with increasing par-
ticle concentration. Once the values of A, are known, the
osmotic pressure can be computed as functions of the par-
ticle concentration. Fig. 6 shows that with increasing par-
ticle concentration the osmotic pressure has an overall
increasing trend. The volume-average radii of bidisperse
spheres are determined as 12.25, 15.61, 16.34, and 17.63
nm with respect to the ratios of particle volume fraction of
1.09, 533, 7.38, and 14.2. Regardless of uncharged or
charged cases, as the volume fraction ratio increases, the
osmotic pressure decreases. Evidently, the increase of elec-
trostatic interaction between same charged spheres caused
by the Debye screening effect provides an increase in the
osmotic pressure compared to the uncharged case. Cor-
responding results obtained using either the analytic
approximation for energy profile or the analytic expression
for osmotic pressure are provided in Fig. 6b, to propose the
validity of a rigorous calculation of energy profile as well
as Monte Carlo simulations for the radial distribution func-
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Fig. 6. The plots of the osmotic pressure II vs particle con-
centration with different concentration ratios for (a)
uncharged hard spheres and (b) charged spheres with
ka,=2.06 and ka,=1.03. Open symbols correspond to
the Monte Carlo results obtained using the analytical
energy profile, and dotted lines are determined using A,
coefficients for the dilute limit case.

tion. The hypothetical results obtained from the dilute
asymptote A, show a great deviation. In Fig. 6b, the
osmotic pressure obtained using the rigorous energy profile
of this study is estimated more than twice that obtained
using the analytical energy profile. But, the discrepancy
between the two results on the volume fraction change is
decreased as the composition of the bimodal suspension
becomes disparate.

Figs. 7 and 8 indicate that a structure is built up which
depends both on the particle volume ratio and the solution
1onic strength. The structure factor in this study ensures the
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Fig. 7. Static structure factor S{Q) of uncharged hard spheres for
(a) different volume fraction ratios and (b) different total
volume fractions, where a, =20 nm, a, = 10 nm, and A=
35 nm.

total contributions consisting three kinds of particle cor-
relations (i.e., large-large, large-small, small-small). The
strong correlations develop between the two different-sized
spheres, and one would expect that the small spheres
would tend to fit into the spaces between the larger ones.
This is indicated by the increase in magnitude of the first
peak in S(Q) and its decrease at low Q values as the vol-
ume fraction increases at a given ionic strength. The first
peak also moves to higher Q values as the volume fraction
increases. Compared between uncharged and charged
cases, it can be observed that with increase in ionic
strength at constant volume fraction a broadening of the
peak occurs, which indicates a decrease in strength of the
interparticle interaction and a greater motion of the
spheres.
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Fig. 8. Static structure factor S(Q) of charged spheres for (a) dif-
ferent volume fraction ratios and (b) different total vol-
ume fractions, where ;=20 nm (xa, =2.06), a,= 10 nm
(xa,=1.03), and A=35nm.

The shear modulus in colloidal dispersions means how a
naterial deforms under given shear stress. For high fre-
Juency oscillations, the shear modulus is closely related to
‘he microstructure. The shear modulus is estimated by
ensuring simultaneously mixed contributions of all corre-
ations, in which we use the pair interaction energy profiles
Jetermined by each volume average radius with respect to
ach volume fraction ratio. In Fig. 9, the uncharged sus-
sension shows a linear relationship between the particle
volume fraction and the shear modulus. In Eq. (12), the
“irst term represents the osmotic pressure, and the second
“erm is pertinent to the effect of particle interaction. In the
i.ennard-Jones potential for uncharged hard spheres, we
determine the relevant coefficients by comparing to the
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Fig. 9. The plots of the shear modulus G'. vs particle concen-
tration with different concentration ratios for uncharged
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Fig. 10. The plots of the shear modulus G'. vs particle con-
centration with different concentration ratios for charged
spheres with xg,;=2.06 and ka,=1.03. Dash-dotted
curves correspond to the Monte Carlo results obtained
using the analytical energy profile.

energy curve of sufficiently high concentration of KCI (i.e.,
1.0 Mol). The second term of Eq. (12) becomes truly neg-
ligible in the case of uncharged suspension.

The shear modulus at each particle volume fraction
increases with decreasing ionic strength, as shown in
Fig. 10. With increasing particle concentration at KCl
1.0 mMol, the shear modulus increases with the power
law exponents in the range 2.1 to 2.3. These values com-
pare well with the previous experimental results obtained
on a polystyrene latex (Ottewill, 1996). Regardless of
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uncharged or charged cases, as the volume fraction ratio
increases, the high frequency limit of the shear modulus
G'.. is decreased. This is a consequence of changing the
number of particles to maintain constant volume frac-
tion, and hence changing the average interparticle spac-
ing. The higher C/C,, which has lower number of
particles, exhibits larger interparticle spacing. This is a
direct result of decreasing the interaction energy, which
yields decreasing G'... As the composition of the bimodal
suspension becomes disparate, the suspension has more
fluid-like property.

5. Conclusions

Applying Monte Carlo simulations, the singularity
method for linearized P-B field, the pairwise additive for
many-body interactions, and the linear viscoelastic model,
yields quantitative predictions for charged bidisperse sus-
pensions. Our major interest lies in exploring a system of
constant particle volume fraction while varying the relative
percentage of the two components. The radial distribution
function of the colloidal dispersion was obtained for higher
particle concentration up to ca. 30 Vol %. The utility of
numerical simulations was verified by attempting com-
parison with analytical approximate resulits.

It is evident that the effect of electrostatic repulsion due
to the Debye screening upon both the osmotic pressure and
the shear modulus depends on the particle concentration.
As the concentration ratio between large and small par-
ticles decreases, both the osmotic pressure and the shear
modulus are increased at a given total concentration. This
trend can be understood from estimating the static structure
factor, in which more small particles tending to fit into the
spaces between the larger ones results in the increasing the
osmotic pressure. We found that larger interparticle spacing
results from the increasing volume fraction ratio, and with
increasing charge contribution the colloidal suspension
becomes more solid-like. Our computational study pro-
vides a framework for applications on the rheology of
charged suspensions.

Appendix A: Long-range electrostatic interac-
tion between dissimilar spheres

The singularity method applied in this study has been
proved to overcome the restrictions of the Derjaguin
approximation as well as the linear superposition approx-
imation. In principle, the electrostatic potential in the liquid
can be represented as a sum of contributions from point
charges located inside the spheres, if the dielectric constant
of solid particle is assumed to be small relative to that of
the surrounding liquid. These point charges are expressed
by the fundamental singular solution to the linearized P-B
equation. The strengths of the singularities are chosen to
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provide the best possible agreement with the prescribed
boundary conditions.

Let us examine a problem of N identical charged spheres
interacting in solution. The electrostatic potential is gov-
erned by a P-B equation with the linear ansatz

V2= (ka) sinhy=(xa)’ (AD)

where the electrostatic potential y is normalized by a char-
acteristic surface potential, and the inverse Debye length

(or double layer thickness) k defined as (ezN AZc;’Z,Z)/SkT

is made dimensionless by the sphere radius a. Note that e
is the elementary Coulombic charge, N, the Avogadro
number, € a dielectric constant, ¢? the concentration of ion
species i far from the sphere (in moles per unit volume),
and Z, its valence. We consider here the condition of over-
all electroneutrality in an equilibrium solution.

Among boundary conditions known as the constant
charge, the constant potential, and the linearized charge
regulation, we consider the sphere surfaces S, having a
constant surface-charge density o, leading to the constant
charge boundary condition

n-Vy=0 on S, (A2)

where n is a unit normal vector pointing into the sphere.
The singular solution to Eq. (A1) for a point charge at the
origin has the form (i.e., w=g exp(—xar)/r) with an
unknown constant q and the distance r from the origin nor-
malized by the sphere radius. For an isolated sphere sus-
pended in an unbounded solution, the value of g can be
determined from the boundary condition.

The bidisperse colloidal suspensions of charged spheres
with radii & and a, are considered as shown in Fig. 2,
where the subscripts refer to the large and small ones,
respectively. Both spheres, when they are not interacting
with each other, have surface potentials y, of 1 equal to K7/
e =25.69 mV. The principle calculation step is similar to a
problem of equal-sized spheres. However, the location of
the surface points and the singular points inside the spheres
should be newly developed according to the sphere radii
ratio aj/a;.

The total surface charge outside the spheres is expressed
as the addition of the sum of the known contribution of sin-
gularities at the sphere centers n -V wee and the sum of the
corresponding contribution of off-center singularities n -V
yve . There are « off-center singularities for each of the N
spheres. Considering the surface charge density o at a sur-
face point x;, the following is written

N N

Snr-Vye(x) = o(x)-3n-Vyi(x) for j=11to M. (A3)

i=1l i=l

Eq. (A3) provides M linear equations for the oV
unknown singularity strengths g¢¢, where M is the total
number of surface points of two dissimilar spheres (i.e.,
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N =2) and a, takes the basis of the characteristic length
for the sphere radius. Then, the following matrix is for-
mulated.

diy - dig - disg || gt b,
dyni - Aune - duniel 95 | = bun (A4)

dy; o dyg - dysa || 95 by

where
= V(FRE) for j=1 10 M, k=1 10 20
ik (ASa)
bj — 0'(xj)*n X V(qi.exp(;:ialrf:1)+qiexp(;z(a1rj€2))' (A5b)
) 52

From Eq. (A4), the value of ¢¢¢ is found by a least-
squares routine that minimizes the sum of squared resid-
uals at the surface points. For surface potential v, the
dimensionless surface charge densities of each sphere are
expressed as 6;= ¥, (1 + xa)) and o, =y, (1 + xa,) (afa,)
for large and small spheres, respectively.

The force on a charged sphere interacting with other
charged spheres is calculated by accounting for the spher-
ical coordinates. The strength of each point singularity is
determined by satisfying the boundary conditions. Once
the solution for the potential is obtained, the force vector F
is calculated from the surface integration of normal com-
ponent of Maxwell stress tensor 7, as follows

F= andSA

S4
= j[(ﬁr eEi—E)l—eEE}ndSA (A6)
SA

where I is the identity tensor and E(=—-V y) denotes the
electric field vector. The electrostatic potential is related to

the difference in the local osmotic pressure I from the
bulk solution given by EKZWZ/Z (Carnie et al., 1994; Hsu
and Liu, 1999). Then the electrostatic interaction energy
profile between pairs of spheres with separation distance
between two spheres s” can be obtained by integrating the
force acting on the sphere,

A,, A; : osmotic virial coefficients [—]
C . particle volume fraction [—]
c? : concentration of ion species i [Mol/m’]
: interaction energy [J]
e . elementary charge [Coul]
e : unit vector [—]
F : electrostatic force [N]
f : wavelength in the dispersion medium [m]
G . dynamic shear modulus [N/m’]
G. : high frequency limit of the shear modulus
[N/m’]

g : radial distribution function [—]

I : identity tensor [}

k : Boltzmann constant [J/K]

M : total number of surface points [—]

N : number of spheres [—]

Ny . Avogadro number [1/Mol]

n : unit normal vector pointing into solvent [—]
n : number density [1/m’]

0 : scattering vector [—]

q : unknown singularity [-]

r : position vector [—]

r : distance normalized by sphere radius [-]
S : thermodynamic coefficient [—]

S4 . surface area [mz]

S . static structure factor [—)

) : center-to-center separation distance [m]
s’ . surface-to-surface distance [m]

T . absolute temperature [K}

T : Maxwell stress tensor [N/m’]

X : Cartesian coordinate [—]

Y, . first virial coefficient in Eq. (16) [m’]
Z : valence of ion species i [—]

Greek Letters
o : number of off-center singularities [—]
Y : shear rate [1/s]
o : Kronecker delta function [—]
£ : dielectric constant [Coul/V - m]
Mo :low frequency limit of the dynamic viscosity
[kg/m - s}
n : dynamic shear viscosity [kg/m - s]
N > high frequency limit of the dynamic viscosity

[kg/m - 5]

" G 0 . scattering wave angle [deg]
Erls) _j_wFde—L[ex g{ T ndSAjldx K : inverse Debye length [1/m]
' A : relaxation time [s]
- S{ [cos 8T, —sin T, Ir"sin8d0dp (A7) I : difference in local osmotic pressure [N/m’]
where dS, is defined in spherical coordinates (7, 8, @). o : dimensionless surface charge density [—]
T : shear stress tensor [N/m?’]
Nomenclatures v : dimensionless potential [—]
78 : dimensionless surface potential of sphere [-]
a : particle radius [m] W : frequency of oscillation of applied flow [1/s]
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<Subscripts>

l : large

s : small

p : particle
<Superscripts>

¢ . center

oc : off-center
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