DOI QR코드

DOI QR Code

Role of Osmotic and Salt Stress in the Expression of Erythrose Reductase in Candida magnoliae

  • Park, Eun-Hee (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Lee, Ha-Yeon (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Myoung-Dong (School of Biotechnology and Bioengineering, Kangwon National University)
  • Received : 2011.05.18
  • Accepted : 2011.06.15
  • Published : 2011.10.28

Abstract

The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG-3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and $H_2O_2$, respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugarindependent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.

Keywords

References

  1. Aguilera, J. and J. A. Prieto. 2001. The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr. Genet. 39: 273-283. https://doi.org/10.1007/s002940100213
  2. Marina, A., Y. Aoki, G. M. Pastore, and Y. K. Park. 1993. Microbial transformation of sucrose and glucose to erythritol. Biotechnol. Lett. 15: 383-388. https://doi.org/10.1007/BF00128281
  3. Choi, J. H., M. D. Kim, J. H. Seo, and J. W. Ahn. 2003. Effects of fermentation conditions on production of erythritol by Candida magnoliae. Kor. J. Food Sci. Technol. 35: 708-712.
  4. Garay-Arroyo, A. and A. A. Covarrubias. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892. https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<879::AID-YEA428>3.0.CO;2-Q
  5. Garreau, H., R. N. Hasan, G. Renault, F. Estruch, E. Boy-Marcotte, and M. Jacquet. 2000. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146: 2113-2120.
  6. Goossens, J. and H. Roper. 1994. Erythritol: A new sweetener. Food Sci. Technol. Today 8:144-149.
  7. Hiele, M., Y. Ghoos, P. Rutgeerts, and G. Vantrappen. 1993. Metabolism of erythritol in humans: Comparison with glucose and lactitol. Br. J. Nutr. 69: 169-176. https://doi.org/10.1079/BJN19930019
  8. Ishizuka, H., K. Tokuoka, T. Sasaki, and H. Taniguchi. 1992. Purification and some properties of an erythrose reductase from an Aureobasidium sp. mutant. Biosci. Biotechnol. Biochem. 56: 941-945. https://doi.org/10.1271/bbb.56.941
  9. Ishizuka, H., K. Wako, T. Kasumi, and T. Sasaki. 1989. Breeding of a mutant of Aureobasidium sp. with high erythritol production. J. Ferment. Bioeng. 68: 310-314. https://doi.org/10.1016/0922-338X(89)90003-2
  10. Kim, S. Y., S. S. Park, Y. J. Jeon, and J. H. Seo. 1996. Analysis of fermentation characteristics for production of erythritol by Candida sp. Kor. J. Food Sci. Technol. 28: 935-939.
  11. Kobayashi, N. and K. McEntee. 1993. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 248-256.
  12. Koh, E. S., T. H. Lee, D. Y. Lee, H. J. Kim, Y. W. Ryu, and J. H. Seo. 2003. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. 25: 2103-2105.
  13. Lee, D. H., Y. J. Lee, Y. W. Ryu, and J. H. Seo. 2010. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH 110. Microb. Cell Fact. 9: 43. https://doi.org/10.1186/1475-2859-9-43
  14. Lee, K. H., J. H. Seo, and Y. W. Ryu. 2002. Fermentation characteristics of salt-tolerant mutant, Candida magnoliae M26, for the production of erythritol. Kor. J. Biotechnol. Bioeng. 17: 509-514.
  15. Lee, J. K., S. J. Ha, S. Y. Kim, and D. K. Oh. 2000. Increased erythritol production in Torula sp. by $Mn^{2+}$ and $Cu^{2+}$. Biotechnol. Lett. 22: 983-986. https://doi.org/10.1023/A:1005672801826
  16. Lee, J. K., K. W. Hong, and S. Y. Kim. 2003. Purification and properties of a NADPH-dependent erythrose reductase from the newly isolated Torula corallina. Biotechnol. Prog. 19: 495-500. https://doi.org/10.1021/bp025680j
  17. Lee, J. K., S. Y. Kim, Y. W. Ryu, J. H. Seo, and J. H. Kim. 2003. Purification and characterization of a novel erythrose reductase from Candida magnoliae. Appl. Environ. Microbiol. 69: 3710-3718. https://doi.org/10.1128/AEM.69.7.3710-3718.2003
  18. Lee, J. K., B. S. Koo, and S. Y. Kim. 2002. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Appl. Environ. Microbiol. 68: 4534-4538. https://doi.org/10.1128/AEM.68.9.4534-4538.2002
  19. Munro, I. C., W. O. Bernt, J. F. Borzelleca, G. Flamm, B. S. Lynch, E. Kennepohl, et al. 1998. Erythritol: An interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. Toxicol. 36: 1139-1174. https://doi.org/10.1016/S0278-6915(98)00091-X
  20. Norbeck, J. and A. Blomberg. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554. https://doi.org/10.1074/jbc.272.9.5544
  21. Oechsner, U., V. Magdolen, and W. Bandlow. 1988. A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein. FEBS Lett. 238: 123-128. https://doi.org/10.1016/0014-5793(88)80240-0
  22. Otey, F. H., J. W. Sloan, C. A. Wilham, and C. L. Mehltretter. 1961. Erythritol and ethylene glycol from dialdehyde starch. Ind. Eng. Chem. 53: 267-268. https://doi.org/10.1021/ie50616a019
  23. Park, S. Y., J. H. Seo, and Y. W. Ryu. 2003. Two-stage fed-batch culture of Candida magnoliae for the production of erythritol using an industrial medium. Kor. J. Biotechnol. Bioeng. 18: 249-254.
  24. Pfeifer, V. F., V. E. Sohns, H. F. Conway, E. B. Lancaster, S. Dabic, and E. L. Griffin. 1960. Two-stage process for dialdehyde starch using electrolytic regeneration of periodic acid. Ind. Eng. Chem. 52: 201-206. https://doi.org/10.1021/ie50603a020
  25. Tokuoka, K., H. Ishizuka, K. Wako, and H. Taniguchi. 1992. Comparison of three forms of erythrose reductase from an Aureobasidium sp. mutant. J. Gen. Appl. Microbiol. 38: 145-155. https://doi.org/10.2323/jgam.38.145
  26. Veiga-da-Cunha, M., H. Santos, and E. Van Schaftingen. 1993. Pathway and regulation of erythritol formation in Leuconostoc oenos. J. Bacteriol. 175: 3941-3948.
  27. Yu, J. H., D. H. Lee, Y. J. Oh, K. C. Han, Y. W. Ryu, and J. H. Seo. 2006. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl. Biochem. Biotechnol. 131: 870-879. https://doi.org/10.1385/ABAB:131:1:870

Cited by

  1. Identification of a newly isolated erythritol-producing yeast and cloning of its erythritol reductase genes vol.39, pp.11, 2011, https://doi.org/10.1007/s10295-012-1162-5
  2. A DFT Study of the Amadori Rearrangement above a Phosphatidylethanolamine Surface: Comparison to Reactions in Aqueous Environment vol.117, pp.16, 2013, https://doi.org/10.1021/jp401488j
  3. Erythritol production with minimum By-product using Candida magnoliae mutant vol.50, pp.3, 2011, https://doi.org/10.1134/s000368381403003x
  4. Improvement of Erythrose Reductase Activity, Deletion of By-products and Statistical Media Optimization for Enhanced Erythritol Production from Yarrowia lipolytica Mutant 49 vol.69, pp.2, 2011, https://doi.org/10.1007/s00284-014-0562-3
  5. Cloning of the Transketolase Gene from Erythritol-Producing Yeast Candida magnoliae vol.24, pp.10, 2014, https://doi.org/10.4014/jmb.1407.07032
  6. Genome-Wide Screening of Saccharomyces cerevisiae Genes Regulated by Vanillin vol.25, pp.1, 2011, https://doi.org/10.4014/jmb.1409.09064
  7. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure vol.70, pp.3, 2016, https://doi.org/10.1515/chempap-2015-0201
  8. Erythritol production by Yarrowia lipolytica mutant strain M53 generated through atmospheric and room temperature plasma mutagenesis vol.26, pp.4, 2017, https://doi.org/10.1007/s10068-017-0116-0
  9. A cost-effective process for the coproduction of erythritol and lipase with Yarrowia lipolytica M53 from waste cooking oil vol.103, pp.None, 2011, https://doi.org/10.1016/j.fbp.2017.03.002
  10. Osmotic Pressure Regulation using KCl for Enhanced Erythritol Production using Trichosporonoides oedocephalis ATCC 16958 vol.23, pp.6, 2011, https://doi.org/10.3136/fstr.23.793
  11. Erythritol as sweetener—wherefrom and whereto? vol.102, pp.2, 2011, https://doi.org/10.1007/s00253-017-8654-1
  12. Enhancement of erythritol production by Trichosporonoides oedocephalis ATCC 16958 through regulating key enzyme activity and the NADPH/NADP ratio with metal ion supplementation vol.48, pp.3, 2011, https://doi.org/10.1080/10826068.2018.1425712
  13. Effects of osmotic pressure and pH on citric acid and erythritol production from waste cooking oil by Yarrowia lipolytica vol.18, pp.6, 2011, https://doi.org/10.1002/elsc.201700114
  14. Erythritol production by yeasts: a snapshot of current knowledge vol.35, pp.7, 2011, https://doi.org/10.1002/yea.3306
  15. Enhanced erythritol production by a Snf1-deficient Yarrowia lipolytica strain under nitrogen-enriched fermentation condition vol.119, pp.None, 2011, https://doi.org/10.1016/j.fbp.2019.11.012
  16. Waste Conversion into a Sweetener-Development of an Innovative Strategy for Erythritol Production by Yarrowia lipolytica vol.12, pp.17, 2011, https://doi.org/10.3390/su12177122