DOI QR코드

DOI QR Code

A Novel Ginsenosidase from an Aspergillus Strain Hydrolyzing 6-O-Multi-Glycosides of Protopanaxatriol-Type Ginsenosides, Named Ginsenosidase Type IV

  • Wang, Dong-Ming (College of Science, Yanbian University) ;
  • Yu, Hong-Shan (College of Biotechnology, Dalian Polytechnic University) ;
  • Song, Jian-Guo (College of Biotechnology, Dalian Polytechnic University) ;
  • Xu, Yu-Feng (College of Biotechnology, Dalian Polytechnic University) ;
  • Liu, Chun-Ying (College of Biotechnology, Dalian Polytechnic University) ;
  • Jin, Feng-Xie (College of Biotechnology, Dalian Polytechnic University)
  • Received : 2011.01.27
  • Accepted : 2011.06.24
  • Published : 2011.10.28

Abstract

Herein, a novel ginsenosidase, named ginsenosidase type IV, hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides (PPT), such as Re, R1, Rf, and Rg2, was isolated from the Aspergillus sp. 39g strain, purified, and characterized. Ginsenosidase type IV was able to hydrolyze the 6-O-${\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Re and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-xyloside of R1 into ginsenoside Rg1. Subsequently, it could hydrolyze the 6-O-${\beta}$-D-glucoside of Rg1 into F1. Similarly, it was able to hydrolyze the 6-O-$_{\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Rg2 and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-glucoside of Rf into Rh1, and then further hydrolyze Rh1 into its aglycone. However, ginsenosidase type IV could not hydrolyze the 3-O- or 20-O-glycosides of protopanaxadiol-type ginsenosides (PPD), such as Rb1, Rb2, Rb3, Rc, and Rd. These exhibited properties are significantly different from those of glycosidases described in Enzyme Nomenclature by the NC-IUBMB. The optimal temperature and pH for ginsenosidase type IV were $40^{\circ}C$ and 6.0, respectively. The activity of ginsenosidase type IV was slightly improved by the $Mg^{2+}$ ion, and inhibited by $Cu^{2+}$ and $Fe^{2+}$ ions. The molecular mass of the enzyme, based on SDS-PAGE, was noted as being approximately 56 kDa.

Keywords

References

  1. Bae, E. A., J. E. Shin, and D. H. Kim. 2005. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol. Pharm. Bull. 28: 1903-1908. https://doi.org/10.1248/bpb.28.1903
  2. Chen, G., M. Yang, Z. Lu, J. Zhang, H. Huang, Y. Liang, et al. 2007. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J. Nat. Prod. 70: 1203-1206. https://doi.org/10.1021/np070053v
  3. Chen, S. W., Y. Wang, Y. Wang, L. J. Wang, Z. M. He, and B. X. Wang. 2003. Study on anti-tumor activity of ginsenoside Rg1 and Rh1. J. Jilin Univ. Med. Ed. 29: 25-28.
  4. Chi, H. and G. E. Ji. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
  5. Fu, Y. Y., H. S. Yu, S. H. Tang, X. C. Hu, Y. H. Wang, B. Liu, et al. 2010. New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain. J. Microbiol. Biotechnol. 20: 1011-1017. https://doi.org/10.4014/jmb.0910.10039
  6. Hasegawa, H., J. H. Sung, and Y. Benno. 1997. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med. 63: 436-440. https://doi.org/10.1055/s-2006-957729
  7. Jin, F. X., Y. Li, C. Z. Zhang, and H. S. Yu. 2001. Thermostable $\alpha$-amylase and $\alpha$-galactosidase production from the thermophilic and aerobic Bacillus sp. JF strain. Process Biochem. 36: 559-564. https://doi.org/10.1016/S0032-9592(00)00247-8
  8. Ko, S. R., K. J. Choi, K. Suzuki, and Y. Suzuki. 2003. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1. Chem. Pharm. Bull. 51: 404-408. https://doi.org/10.1248/cpb.51.404
  9. Ko, S. R., Y. Suzuki, K. J. Choi, and Y. H. Kim. 2000. Enzymatic preparation of genuine prosapogenin, 20(S)-ginsenoside Rh1, from ginsenosides Re and Rg1. Biosci. Biotechnol. Biochem. 64: 2739-2743. https://doi.org/10.1271/bbb.64.2739
  10. Liu, L., L. J. Gu, D. L. Zhang, Z. Wang, C. Y. Wang, Z. Li, and C. K. Sung. 2010. Microbial conversion of rare ginsenoside Rf to 20(S)-protopanaxatriol by Aspergillus niger. Biosci. Biotechnol. Biochem. 74: 96-100. https://doi.org/10.1271/bbb.90596
  11. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  12. Park, E. K., M. K. Choo, M. J. Han, and D. H. Kim. 2004. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immun. 133: 113-120. https://doi.org/10.1159/000076383
  13. Sun, H. X., Y. Chen, and Y. Ye. 2006. Ginsenoside Re and notoginsenoside R1: Immunologic adjuvants with low haemolytic effect. Chem. Biodivers. 3: 718-726. https://doi.org/10.1002/cbdv.200690074
  14. Sun, H., Z. Yang, and Y. Ye. 2006. Structure and biological activity of protopanaxatriol-type saponins from the roots of Panax notoginseng. Int. Immunopharmacol. 6: 14-25. https://doi.org/10.1016/j.intimp.2005.07.003
  15. Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065-1071. https://doi.org/10.1124/dmd.31.8.1065
  16. Wang, Y., T. H. Liu, W. Wang, and B. X. Wang. 2001. Research on the transformation of ginsenoside Rg1 by intestinal flora. China J. Chinese Mater. Med. 26: 188-190.
  17. Wang, Y. Z., J. Chen, S. F. Chu, Y. S. Wang, X. Y. Wang, N. H. Chen, and J. T. Zhang. 2009. Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1's metabolites ginsenoside Rh1 and protopanaxatriol. J. Pharmacol. Sci. 109: 504-510. https://doi.org/10.1254/jphs.08060FP
  18. Weber, K., J. R. Pringle, and M. Osborn. 1972. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 26: 3-27.
  19. Wu, X. L., Y. X Zhang, W. Q. Zhao, J. H. Wang, C. F. Wu, and X. Li. 2008. Transformation of ginsenoside Rg1 to ginsenoside F1 specific by fungi strains EST-I and EST-II. J. Shenyang Pharm. Univ. 25: 73-76.
  20. Yu, H. S., C. Z. Zhang, M. C. Lu, F. Sun, Y. Y. Fu, and F. X. Jin. 2007. Purification and characterization of ginsenosidase hydrolyzing multi-glycosides of protopanaxadiol ginsenoside, ginsenoside type I. Chem. Pharm. Bull. 55: 231-235. https://doi.org/10.1248/cpb.55.231
  21. Yu, H. S., J. M. Gong, C. Z. Zhang, and F. X. Jin. 2002. Purification and characterization of ginsenoside$-\alpha-_L-$rhamnosidase. Chem. Pharm. Bull. 50: 175-178. https://doi.org/10.1248/cpb.50.175
  22. Yu, H. S., Q. M. Liu, C. Z. Zhang, M. C. Lu, Y. Y. Fu, W. T. Im, et al. 2009. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44: 772-775. https://doi.org/10.1016/j.procbio.2009.02.005
  23. Zhang, J., H. Guo, Y. Tian, P. Liu, N. Li, J. Zhou, and D. Guo. 2007. Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochemistry 68: 2523-2530. https://doi.org/10.1016/j.phytochem.2007.05.028
  24. Zhao, W. Q., X. L. Wu, Y. Wang, and Y. X. Zhang. 2009. Isolation and identification of a fungal strain with the ability to transform ginsenoside Rg1. Asian J. Trad. Med. 4: 19-25.

Cited by

  1. Enzyme kinetics of ginsenosidase type IV hydrolyzing 6-O-multi-glycosides of protopanaxatriol type ginsenosides vol.47, pp.1, 2011, https://doi.org/10.1016/j.procbio.2011.10.026
  2. ${\beta}$-Glycosidase-Assisted Bioconversion of Ginsenosides in Purified Crude Saponin and Extracts from Red Ginseng (Panax ginseng C. A. Meyer) vol.22, pp.6, 2011, https://doi.org/10.1007/s10068-013-0260-0
  3. Characterization of the ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides vol.97, pp.2, 2011, https://doi.org/10.1007/s00253-012-4324-5
  4. β-Glucosidase from Penicillium aculeatum hydrolyzes exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides vol.97, pp.14, 2011, https://doi.org/10.1007/s00253-013-4828-7
  5. Protodioscin-glycosidase-1 hydrolyzing 26-O-β-d-glucoside and 3-O-(1 → 4)-α-l-rhamnoside of steroidal saponins from Aspergillus oryzae vol.97, pp.23, 2011, https://doi.org/10.1007/s00253-013-4791-3
  6. Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using β-glucosidase from Pyrococcus furiosus vol.36, pp.1, 2011, https://doi.org/10.1007/s10529-013-1331-2
  7. Preparation of przewalskinic acid A from salvianolic acid B using a crude enzyme from an Aspergillus oryzae strain vol.41, pp.5, 2011, https://doi.org/10.1007/s10295-013-1399-7
  8. Postgenomics Biomarkers for Rabies-The Next Decade of Proteomics vol.19, pp.2, 2011, https://doi.org/10.1089/omi.2014.0127
  9. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection vol.161, pp.5, 2011, https://doi.org/10.1007/s00705-016-2795-x
  10. Pathway Analysis of Proteomics Profiles in Rabies Infection: Towards Future Biomarkers? vol.20, pp.2, 2011, https://doi.org/10.1089/omi.2015.0137
  11. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides vol.36, pp.6, 2011, https://doi.org/10.3109/07388551.2015.1083942
  12. Novel strategy for expression of authentic and bioactive human basic fibroblast growth factor in Bacillus subtilis vol.102, pp.16, 2011, https://doi.org/10.1007/s00253-018-9176-1
  13. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.00188
  14. Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin vol.25, pp.1, 2011, https://doi.org/10.1186/s12929-018-0416-6
  15. Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon PPT by using β-glucosidase from Thermotoga neapolitana vol.41, pp.4, 2011, https://doi.org/10.1007/s10529-019-02665-7
  16. Nyctinomops laticaudatus bat-associated Rabies virus causes disease with a shorter clinical period and has lower pathogenic potential than strains isolated from wild canids vol.164, pp.10, 2019, https://doi.org/10.1007/s00705-019-04335-5
  17. Solid-State Fermentation With Aspergillus cristatus Enhances the Protopanaxadiol- and Protopanaxatriol-Associated Skin Anti-aging Activity of Panax notoginseng vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.602135