References
- Bae, E. A., J. E. Shin, and D. H. Kim. 2005. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol. Pharm. Bull. 28: 1903-1908. https://doi.org/10.1248/bpb.28.1903
- Chen, G., M. Yang, Z. Lu, J. Zhang, H. Huang, Y. Liang, et al. 2007. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J. Nat. Prod. 70: 1203-1206. https://doi.org/10.1021/np070053v
- Chen, S. W., Y. Wang, Y. Wang, L. J. Wang, Z. M. He, and B. X. Wang. 2003. Study on anti-tumor activity of ginsenoside Rg1 and Rh1. J. Jilin Univ. Med. Ed. 29: 25-28.
- Chi, H. and G. E. Ji. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
- Fu, Y. Y., H. S. Yu, S. H. Tang, X. C. Hu, Y. H. Wang, B. Liu, et al. 2010. New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain. J. Microbiol. Biotechnol. 20: 1011-1017. https://doi.org/10.4014/jmb.0910.10039
- Hasegawa, H., J. H. Sung, and Y. Benno. 1997. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med. 63: 436-440. https://doi.org/10.1055/s-2006-957729
-
Jin, F. X., Y. Li, C. Z. Zhang, and H. S. Yu. 2001. Thermostable
$\alpha$ -amylase and$\alpha$ -galactosidase production from the thermophilic and aerobic Bacillus sp. JF strain. Process Biochem. 36: 559-564. https://doi.org/10.1016/S0032-9592(00)00247-8 - Ko, S. R., K. J. Choi, K. Suzuki, and Y. Suzuki. 2003. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1. Chem. Pharm. Bull. 51: 404-408. https://doi.org/10.1248/cpb.51.404
- Ko, S. R., Y. Suzuki, K. J. Choi, and Y. H. Kim. 2000. Enzymatic preparation of genuine prosapogenin, 20(S)-ginsenoside Rh1, from ginsenosides Re and Rg1. Biosci. Biotechnol. Biochem. 64: 2739-2743. https://doi.org/10.1271/bbb.64.2739
- Liu, L., L. J. Gu, D. L. Zhang, Z. Wang, C. Y. Wang, Z. Li, and C. K. Sung. 2010. Microbial conversion of rare ginsenoside Rf to 20(S)-protopanaxatriol by Aspergillus niger. Biosci. Biotechnol. Biochem. 74: 96-100. https://doi.org/10.1271/bbb.90596
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
- Park, E. K., M. K. Choo, M. J. Han, and D. H. Kim. 2004. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immun. 133: 113-120. https://doi.org/10.1159/000076383
- Sun, H. X., Y. Chen, and Y. Ye. 2006. Ginsenoside Re and notoginsenoside R1: Immunologic adjuvants with low haemolytic effect. Chem. Biodivers. 3: 718-726. https://doi.org/10.1002/cbdv.200690074
- Sun, H., Z. Yang, and Y. Ye. 2006. Structure and biological activity of protopanaxatriol-type saponins from the roots of Panax notoginseng. Int. Immunopharmacol. 6: 14-25. https://doi.org/10.1016/j.intimp.2005.07.003
- Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065-1071. https://doi.org/10.1124/dmd.31.8.1065
- Wang, Y., T. H. Liu, W. Wang, and B. X. Wang. 2001. Research on the transformation of ginsenoside Rg1 by intestinal flora. China J. Chinese Mater. Med. 26: 188-190.
- Wang, Y. Z., J. Chen, S. F. Chu, Y. S. Wang, X. Y. Wang, N. H. Chen, and J. T. Zhang. 2009. Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1's metabolites ginsenoside Rh1 and protopanaxatriol. J. Pharmacol. Sci. 109: 504-510. https://doi.org/10.1254/jphs.08060FP
- Weber, K., J. R. Pringle, and M. Osborn. 1972. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 26: 3-27.
- Wu, X. L., Y. X Zhang, W. Q. Zhao, J. H. Wang, C. F. Wu, and X. Li. 2008. Transformation of ginsenoside Rg1 to ginsenoside F1 specific by fungi strains EST-I and EST-II. J. Shenyang Pharm. Univ. 25: 73-76.
- Yu, H. S., C. Z. Zhang, M. C. Lu, F. Sun, Y. Y. Fu, and F. X. Jin. 2007. Purification and characterization of ginsenosidase hydrolyzing multi-glycosides of protopanaxadiol ginsenoside, ginsenoside type I. Chem. Pharm. Bull. 55: 231-235. https://doi.org/10.1248/cpb.55.231
-
Yu, H. S., J. M. Gong, C. Z. Zhang, and F. X. Jin. 2002. Purification and characterization of ginsenoside
$-\alpha-_L-$ rhamnosidase. Chem. Pharm. Bull. 50: 175-178. https://doi.org/10.1248/cpb.50.175 - Yu, H. S., Q. M. Liu, C. Z. Zhang, M. C. Lu, Y. Y. Fu, W. T. Im, et al. 2009. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44: 772-775. https://doi.org/10.1016/j.procbio.2009.02.005
- Zhang, J., H. Guo, Y. Tian, P. Liu, N. Li, J. Zhou, and D. Guo. 2007. Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochemistry 68: 2523-2530. https://doi.org/10.1016/j.phytochem.2007.05.028
- Zhao, W. Q., X. L. Wu, Y. Wang, and Y. X. Zhang. 2009. Isolation and identification of a fungal strain with the ability to transform ginsenoside Rg1. Asian J. Trad. Med. 4: 19-25.
Cited by
- Enzyme kinetics of ginsenosidase type IV hydrolyzing 6-O-multi-glycosides of protopanaxatriol type ginsenosides vol.47, pp.1, 2011, https://doi.org/10.1016/j.procbio.2011.10.026
-
${\beta}$ -Glycosidase-Assisted Bioconversion of Ginsenosides in Purified Crude Saponin and Extracts from Red Ginseng (Panax ginseng C. A. Meyer) vol.22, pp.6, 2011, https://doi.org/10.1007/s10068-013-0260-0 - Characterization of the ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides vol.97, pp.2, 2011, https://doi.org/10.1007/s00253-012-4324-5
- β-Glucosidase from Penicillium aculeatum hydrolyzes exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides vol.97, pp.14, 2011, https://doi.org/10.1007/s00253-013-4828-7
- Protodioscin-glycosidase-1 hydrolyzing 26-O-β-d-glucoside and 3-O-(1 → 4)-α-l-rhamnoside of steroidal saponins from Aspergillus oryzae vol.97, pp.23, 2011, https://doi.org/10.1007/s00253-013-4791-3
- Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using β-glucosidase from Pyrococcus furiosus vol.36, pp.1, 2011, https://doi.org/10.1007/s10529-013-1331-2
- Preparation of przewalskinic acid A from salvianolic acid B using a crude enzyme from an Aspergillus oryzae strain vol.41, pp.5, 2011, https://doi.org/10.1007/s10295-013-1399-7
- Postgenomics Biomarkers for Rabies-The Next Decade of Proteomics vol.19, pp.2, 2011, https://doi.org/10.1089/omi.2014.0127
- Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection vol.161, pp.5, 2011, https://doi.org/10.1007/s00705-016-2795-x
- Pathway Analysis of Proteomics Profiles in Rabies Infection: Towards Future Biomarkers? vol.20, pp.2, 2011, https://doi.org/10.1089/omi.2015.0137
- Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides vol.36, pp.6, 2011, https://doi.org/10.3109/07388551.2015.1083942
- Novel strategy for expression of authentic and bioactive human basic fibroblast growth factor in Bacillus subtilis vol.102, pp.16, 2011, https://doi.org/10.1007/s00253-018-9176-1
- Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.00188
- Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin vol.25, pp.1, 2011, https://doi.org/10.1186/s12929-018-0416-6
- Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon PPT by using β-glucosidase from Thermotoga neapolitana vol.41, pp.4, 2011, https://doi.org/10.1007/s10529-019-02665-7
- Nyctinomops laticaudatus bat-associated Rabies virus causes disease with a shorter clinical period and has lower pathogenic potential than strains isolated from wild canids vol.164, pp.10, 2019, https://doi.org/10.1007/s00705-019-04335-5
- Solid-State Fermentation With Aspergillus cristatus Enhances the Protopanaxadiol- and Protopanaxatriol-Associated Skin Anti-aging Activity of Panax notoginseng vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.602135