• Title/Summary/Keyword: oscillatory solutions

Search Result 70, Processing Time 0.024 seconds

OSCILLATORY BEHAVIOUR OF SOLUTIONS OF y"+P(x)y=f(x)

  • Zaghrout, A.A.S.;Ragab, A.A.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 1987
  • This paper is a study of the oscillatory and asymptotic behaviour of solutions of the second order nonhomogeneous linear differential equation y"+P(x)y=f(x), and the associated homogeneous equation. Conditions are determined, under which the nonhomogeneous equation is oscillatory if and only if the homogeneous equation is oscillatory.

  • PDF

OSCILLATORY OF UNSTABLE TYPE SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Ping, Bi;Dong, Wenlei
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.87-99
    • /
    • 2002
  • We consider the problem of oscillation and nonoscillation solutions for unstable type second-order neutral difference equation : $\Delta^2(x(n))-p(n)x(n-\tau))=q(n)x(g(n))$. (1) In this paper, we obtain some conditions for the bounded solutions of Eq(1) to be oscillatory and for the existence of the nonoscillatory solutions.

Transition of Natural Convective Flows in a Horizontal Cylindrical Annulus: Pr=0.2 (수평 원주형 환형 내에서의 자연 대류 유동의 천이: Pr=0.2)

  • Yu, Ju-Sik;Ha, Dae-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.804-810
    • /
    • 2001
  • Transition of flows in natural convection in a horizontal cylindrical annulus is investigated for the fluid with Pr=0.2. The unsteady streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady crescent-shaped eddy flow bifurcates to a time-periodic flow with like-rotating eddies. After the first Hopf bifurcation, however, a reverse transition from oscillatory to a steady flow occurs by the flow pattern variation. Hysteresis phenomenon occurs between the solution branches of up-scan and down-scan stages, and dual solutions with one steady and one oscillatory flow are found. Overall Nusselt of the flows at the flows at the down-scan stage is greater than that at the up-scan stage.

A NOTE ON THE OSCILLATION CRITERIA OF SOLUTIONS TO SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION

  • Kim, Yong-Ki
    • The Pure and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 1995
  • Consider a solution y(t) of the nonlinear equation (E) y" + f(t, y) = 0. A solution y(t) is said to be oscillatory if for every T > 0 there exists $t_{0}$ > T such that y($t_{0}$) = 0. Let F be the class of solutions of (E) which are indefinitely continuable to the right, i.e. y $\in$ F implies y(t) exists as a solution to (E) on some interval of the form [t$\sub$y/, $\infty$). Equation (E) is said to be oscillatory if each solution from F is oscillatory.(omitted)

  • PDF

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Transition to Oscillatory Natural Convection in a Wide-gap Horizontal Cylindrical Annulus: Pr=0.1 (넓은 수평 환형 공간에서의 진동하는 자연 대류로의 천이 : Pr=0.1)

  • Yoo Joo-Sik;Kim Yong-Jin;Eom Yong-Kyoon
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.40-46
    • /
    • 2000
  • Natural convection in a wide-gap horizontal annulus is considered, and the transition of flows from steady to oscillatory convection is investigated for the fluid with Pr=0.1. The unsteady streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady crescent-shaped flow bifurcates to a time-periodic flow with like-rotating eddies. And afterwards, a transition to an oscillatory multicellular flow with a counter-rotating eddy on the top of the annulus occurs. A transition from steady to an oscillatory flow occurs, but dual solutions and hysteresis phenomena are not observed.

  • PDF

Numerical Simulation of Periodic and Oscillatory Problems by Using RK-Butcher Algorithms (RK-Butcher알고리듬의 사용에 의한 주기적 진동 문제의 수치적 시뮬레이션)

  • Park, Dae-Chul;Gopal, Devarajan;Murugesh, V.
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.82-88
    • /
    • 2008
  • In this paper, Runge-Kutta (RK)-Butcher algorithm is proposed to study the periodic and oscillatory problems. Simulation results obtained using RK-Butcher algorithms and the classical fourth order Runge-Kutta (RK(4)) methods are compared with the exact solutions of a few periodic and oscillatory problems to confirm the performance of the proposed algorithm. The simulation results from RK-Butcher algorithms are always found to be very close to the exact solutions of these problems. Further, it is found that the RK-Butcher algorithm is superior when compared to RK(4) methods in terms of accuracy. The RK-Butcher algorithm can be easily implemented in a programming language and a more accurate solution may be obtained for any length of time. RK-Butcher algorithm is applicable as a good numerical algorithm for studying the problems of orbit and two body as it gives the nearly identical solutions.

  • PDF

Velocity Profiles and Entrance Length of Transitional Oscillatory Flows in the Entrance Region of a Square Duct (정(正)4각(角)덕트 입구영역(入口領域)에서 천이(遷移) 진동유동(振動流動)의 입구(入口)길이와 속도분포(速度分布))

  • Choi, J.H.;Choi, B.M.;Yoo, Y.T.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.275-287
    • /
    • 1993
  • The flow characteristics of the transitional oscillatory flows are investigated analytically and experimentally in the entrance region of a square duct. The systems of conservation equations are analytically solved by linearizing the non-linear convective terms for the developing transitional oscillatory flows in a square duct. The analytical solutions are obtained in the form of infinite series for the velocity profiles. The experimental study for the air flow in a square duct is carried out to measure the velocity profiles and waveforms by using a hot-wire anemometer with the data acquisition and processing systems. The theoretical and experimental results provide the major characteristics of the developing transitional oscillatory flows, such as velocity profiles, velocity waveforms, and entrance length. The velocity profiles in the decelerating phase are larger than those in the accelerating phase for the developing transitional oscillatory flows. The correlations of the entrance length of the transitional oscillatory flows in a square duct are found to be $Le/Dh=K{\cdot}Re_{os}/2({\omega}^+)^2$, where K is 1.23 of an experimental constant.

  • PDF

ON SOME SPECIAL CONDITIONS OF n-TH ORDER NON-OSCILLATORY NONLINEAR SYSTEMS

  • Alam, M.-Shamsul;Hossain, M.B.
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.755-765
    • /
    • 2003
  • Krylov-Bogoliubov-Mitropolskii method has been extended to obtain asymptotic solution of n-th order nonlinear differential system characterized by certain non-oscillatory processes. The damping force is considered in such a manner that one of the characteristic roots of the linear system becomes small and others are in integral multiple. The method is illustrated by an example. The solutions for different initial conditions show a good agreement with those obtained by numerical method.