• 제목/요약/키워드: oscillation criteria

검색결과 54건 처리시간 0.022초

INTERVAL OSCILLATION CRITERIA FOR A SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION

  • Zhang, Cun-Hua
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1165-1176
    • /
    • 2009
  • This paper is concerned with the interval oscillation of the second order nonlinear ordinary differential equation (r(t)|y'(t)|$^{{\alpha}-1}$ y'(t))'+p(t)|y'(t)|$^{{\alpha}-1}$ y'(t)+q(t)f(y(t))g(y'(t))=0. By constructing ageneralized Riccati transformation and using the method of averaging techniques, we establish some interval oscillation criteria when f(y) is not differetiable but satisfies the condition $\frac{f(y)}{|y|^{{\alpha}-1}y}$ ${\geq}{\mu}_0$ > 0 for $y{\neq}0$.

  • PDF

OSCILLATIONS OF SOLUTIONS OF SECOND ORDER QUASILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

  • Jin, Chuhua;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.1-16
    • /
    • 2007
  • Some Kamenev-type oscillation criteria are obtained for a second order quasilinear damped differential equation with impulses. These criteria generalize and improve some well-known results for second order differential equations with land without impulses. In addition, new oscillation criteria are also obtained to generalize and improve known results. Two examples of applications are given to illustrate the theory.

Oscillation of Second Order Nonlinear Elliptic Differential Equations

  • Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.65-77
    • /
    • 2006
  • By using general means, some oscillation criteria for second order nonlinear elliptic differential equation with damping $$\sum_{i,j=1}^{N}D_i[a_{ij}(x)D_iy]+\sum_{i=1}^{N}b_i(x)D_iy+p(x)f(y)=0$$ are obtained. These criteria are of a high degree of generality and extend the oscillation theorems for second order linear ordinary differential equations due to Kamenev, Philos and Wong.

  • PDF

Oscillation Criteria of Second-order Half-linear Delay Difference Equations

  • Saker, S.H.
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.579-594
    • /
    • 2005
  • In this paper, we will establish some new oscillation criteria for the second-order half-linear delay difference equation $${\Delta}(Pn ({\Delta}Xn)^{\gamma})+q_nx_\array{{\gamma}\\n-{\sigma}}=0,\;n{\geq}n_0$$, where ${\gamma}>0$ is a quotient of odd positive integers. Our results in this paper are sharp and improve some of the well known oscillation results in the literature. Some examples are considered to illustrate our main results.

  • PDF

OSCILLATION CRITERIA OF SECOND ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Lv, Xiaojing;Yu, Tian
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.125-138
    • /
    • 2003
  • Some Riccati type difference inequalities are established for the second-order nonlinear difference equations with negative neutral term $\Delta$(a(n)$\Delta$(x(n) - px(n-$\tau$))) + f(n, x($\sigma$(n))) = 0 using these inequalities we obtain some oscillation criteria for the above equation.

OSCILLATION THEOREMS FOR CERTAIN SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

  • Sun, Yibing;Han, Zhenlai;Zhao, Ping;Sun, Ying
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1557-1569
    • /
    • 2011
  • In this paper, we consider the oscillation of the following certain second order nonlinear differential equations $(r(t)(x^{\prime}(t))^{\alpha})^{\prime}+q(t)x^{\beta}(t)=0$>, where ${\alpha}$ and ${\beta}$ are ratios of positive odd integers. New oscillation theorems are established, which are based on a class of new functions ${\Phi}={\Phi}(t,s,l)$ defined in the sequel. Also, we establish some interval oscillation criteria for this equation.