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Abstract. In this paper, we consider the nonlinear hyperbolic equations with forcing

term. Some sufficient conditions for the oscillation are derived by using integral averaging

method and a generalized Riccati technique.

1. Introduction

We shall provide oscillation results of solution of the hyperbolic equation

(E)
∂

∂t

(
r(t)

∂

∂t
u(x, t)

)
+ p(t)

∂

∂t
u(x, t)

−a(t)∆u(x, t)−
k∑

i=1

bi(t)∆u(x, τi(t))

+
m∑

i=1

qi(x, t)ϕi(u(x, σi(t))) = f(x, t), (x, t) ∈ Ω ≡ G× (0,∞),

where ∆ is the Laplacian in Rn and G is a bounded domain of Rn with piecewise
smooth boundary ∂G. Recently, the oscillation of solution of hyperbolic equation
via Riccati method has been investigated by many authors, see for example [2], [6],
[7], In particular, Shoukaku [6] established the oscillation results of solution of the
equation (E). In the work of [6], restriction is imposed on forcing term f(x, t) to be
oscillatory function.

Gaef and Spikes [3], Wong and Agarwal [8], Li [4] and Agawal, et al [1] obtained
several oscillation results for second order nonlinear differential equations. Their
results used the different assumption of forcing term from the work of [6].

Motivated by the work of [1], in this paper we will obtain the oscillation results
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of the hyperbolic equation (E), and remove the assumption of the forcing term such
as the work [6].

We assume throughout this paper that:

(H1) r(t) ∈ C1([0,∞); (0,∞)), p(t) ∈ C([0,∞);R),
a(t), bi(t) ∈ C([0,∞); [0,∞)) (i = 1, 2, . . . , k),
qi(x, t) ∈ C(Ω; [0,∞)) (i = 1, 2, . . . , m), f(x, t) ∈ C(Ω;R);

(H2) τi(t) ∈ C([0,∞);R), lim
t→∞

τi(t) = ∞ (i = 1, 2, . . . , k),

σi(t) ∈ C1([0,∞);R), lim
t→∞

σi(t) = ∞ (i = 1, 2, . . . , m);

(H3) ϕi(s) ∈ C1(R;R) (i = 1, 2, . . . ,m) are convex on [0,∞), and ϕi(s) ≥ 0 and
ϕi(−s) = −ϕi(s) for s ≥ 0.

We consider the following Dirichlet and Robin boundary boundary conditions

(B1) u = ψ on ∂G× [0,∞),

(B2)
∂u

∂ν
+ µu = ψ̃ on ∂G× [0,∞),

where ν denotes the unit exterior normal vector to ∂G and ψ, ψ̃ ∈ C(∂G×(0,∞);R),
µ ∈ C(∂G× (0,∞); [0,∞)).

Definition 1. By a solution of Eq. (E) we mean a function u ∈ C2(G× [t−1,∞))∩
C(G× [t̃−1,∞)) which satisfies (E), where

t−1 = min
{

0, min
1≤i≤k

{
inf
t≥0

τi(t)
}}

, t̃−1 = min
{

0, min
1≤i≤m

{
inf
t≥0

σi(t)
}}

.

Definition 2. A solution u of Eq. (E) is said to be oscillatory in Ω if u has a
zero in G × (t,∞) for any t > 0. That is, there exists a point t1 > t such that
u(x, t1) = 0.

Definition 3. We say that functions H1,H2 belong to a function class H, denoted
by H1,H2 ∈ H, if H1,H2 ∈ C(D; [0,∞)) satisfy

Hi(t, t) = 0, Hi(t, s) > 0 (i = 1, 2) for t > s,

where D = {(t, s) : 0 < s ≤ t < ∞}. Moreover, the partial derivatives ∂H1/∂t and
∂H2/∂s exist on D such that

∂H1

∂t
(s, t) = h1(s, t)H1(s, t) and

∂H2

∂s
(t, s) = −h2(t, s)H2(t, s),

where h1, h2 ∈ Cloc(D;R).

2. Reduction to One-Dimensional Problems

In this section we reduce the multi-dimensional oscillation problems for (E) to
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one-dimensional oscillation problems. It is known that the first eigenvalue λ1 of the
eigenvalue problem

−∆w = λw in G,

w = 0 on ∂G

is positive, and the corresponding eigenfunction Φ(x) can be chosen so that Φ(x) > 0
in G. Now we define

qi(t) = min
x∈G

qi(x, t).

The following notation will be used:

U(t) = KΦ

∫

G

u(x, t)Φ(x)dx, Ũ(t) =
1
|G|

∫

∂G

u(x, t)dx,

F (t) = KΦ

∫

G

f(x, t)Φ(x)dx, F̃ (t) =
1
|G|

∫

∂G

f(x, t)dx,

Ψ(t) = KΦ

∫

∂G

ψ
∂Φ
∂ν

(x)dS, Ψ̃(t) =
1
|G|

∫

∂G

ψ̃dS,

where KΦ = (
∫

G
Φ(x)dx)−1 and |G| = ∫

G
dx.

Theorem 1. If every eventually positive solution y(t) of the functional differential
inequalities

(1) (r(t)y′(t))′ + p(t)y′(t) +
m∑

i=1

qi(t)ϕi(y(σi(t))) ≤ ±G(t)

satisfies lim inf
t→∞

y(t) = 0, then every solution u(x, t) of the problem (E), (B1) is
oscillatory in Ω or sastifies

(2) lim inf
t→∞

|U(t)| = 0,

where

G(t) = F (t)− a(t)Ψ(t)−
k∑

i=1

bi(τi(t))Ψ(τi(t)).

Proof. Suppose to the contrary that there is a nonoscillatory solution u of the
problem (E), (B1) which does not satisfy (2). Without loss of generality we may
assume that u(x, t) > 0 in G × [t0,∞) for some t0 > 0 because the case where
u(x, t) < 0 can be treated similarly. Since (H2) holds, we see that u(x, τi(t)) >
0 (i = 1, 2, . . . , k) and u(x, σi(t)) > 0 (i = 1, 2, . . . , m) in G × [t1,∞) for some
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t1 ≥ t0. Multiplying (E) by KΦΦ(x) and integrating over G, we obtain

(r(t)U ′(t))′ + p(t)U ′(t)(3)

−a(t)KΦ

∫

G

∆u(x, t)Φ(x)dx−
k∑

i=1

bi(t)KΦ

∫

G

∆u(x, τi(t))Φ(x)dx

+
m∑

i=1

KΦ

∫

G

qi(x, t)ϕi(u(x, σi(t)))Φ(x)dx = F (t), t ≥ t1.

From Green’s formula it follows that

KΦ

∫

G

∆u(x, t)Φ(x)dx ≤ −Ψ(t), t ≥ t1,(4)

KΦ

∫

G

∆u(x, τi(t))Φ(x)dx ≤ −Ψ(τi(t)), t ≥ t1.(5)

An application of Jensen’s inequality shows that

(6)
m∑

i=1

KΦ

∫

G

qi(x, t)ϕi(u(x, σi(t)))Φ(x)dx ≥
m∑

i=1

qi(t)ϕi(U(σi(t))), t ≥ t1.

Combining (3)–(6) yields

(r(t)U ′(t))′ + p(t)U ′(t) +
m∑

i=1

qi(t)ϕi(U(σi(t))) ≤ G(t), t ≥ t1.

Therefore U(t) is a positive solution of (1) which does not satisfy (2). This contra-
dicts the hypothesis and completes the proof. ¤

Theorem 2. If every eventually positive solution y(t) of the functional differential
inequalities

(7) (r(t)y′(t))′ + p(t)y′(t) +
m∑

i=1

qi(t)ϕi(y(σi(t))) ≤ ±G̃(t)

satisfies lim inf
t→∞

y(t) = 0, then every solution u(x, t) of the problem (E), (B2) is
oscillatory in Ω or satisfies

(8) lim inf
t→∞

|Ũ(t)| = 0,

where

G̃(t) = F̃ (t) + a(t)Ψ̃(t) +
k∑

i=1

bi(τi(t))Ψ̃(τi(t)).
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Proof. Suppose to the contrary that there is a nonoscillatory solution u of problem
(E), (B2) which does not satisfy (8). Without loss of generality we may assume
that u(x, t) > 0 in G × [t0,∞) for some t0 > 0. Since (H2) holds, we see that
u(x, τi(t)) > 0 (i = 1, 2, . . . , k) and u(x, σi(t)) > 0 (i = 1, 2, . . . ,m) in G × [t1,∞)
for some t1 ≥ t0. Dividing (E) by |G| and integrating over G, we obtain

(r(t)Ũ ′(t))′ + p(t)Ũ ′(t)(9)

−a(t)
|G|

∫

G

∆u(x, t)dx−
k∑

i=1

bi(t)
|G|

∫

G

∆u(x, τi(t))dx

+
1
|G|

m∑

i=1

∫

G

qi(x, t)ϕi(u(x, σi(t)))dx = F̃ (t), t ≥ t1.

It follows from Green’s formula that

1
|G|

∫

G

∆u(x, t)dx ≤ Ψ̃(t), t ≥ t1,(10)

1
|G|

∫

G

∆u(x, τi(t))dx ≤ Ψ̃(τi(t)), t ≥ t1.(11)

Applying Jensen’s inequality, we observe that

(12)
1
|G|

m∑

i=1

∫

G

qi(x, t)ϕi(u(x, σi(t)))dx ≥
m∑

i=1

qi(t)ϕi(Ũ(σi(t))), t ≥ t1.

Combining (9)–(12) yields

(r(t)Ũ ′(t))′ + p(t)Ũ ′(t) +
m∑

i=1

qi(t)ϕi(Ũ(σi(t))) ≤ G̃(t), t ≥ t1.

Hence, Ũ(t) is a positive solution of (7) which does not satisfy (8). This contradicts
the hypothesis and completes the proof. ¤

3. Second Order Functional Differential Inequality

We obatin the sufficient conditions for every positive solution y(t) of the func-
tional differential inequality

(13) (r(t)y′(t))′ + p(t)y′(t) +
m∑

i=1

qi(t)ϕi(y(σi(t))) ≤ f(t)

to satisfy lim inf
t→∞

y(t) = 0, where f(t) ∈ C([0,∞);R). We assume the following
hypotheses:

(H4) ϕ′j(t) > 0, ϕ′j(t) is nondecreasing for t > 0 and some j ∈ {1, 2, . . . , m};
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(H5) there exists a positive constant σ such that

σ′j(t) ≥ σ and σj(t) ≤ t;

(H6) there exists a positive constant K such that

qj(t) ≥ K|f(t)|.

Theorem 3. If the Riccati inequalities for i = 1, 2

(14) x′(t) +
1
2

1
pi(t)

x2(t) ≤ −q(t)

have no solution on [T,∞) for all large T , then eventually positive solution of (13)
satisfies lim inf

t→∞
y(t) = 0, where

p1(t) = K̃eR(t), p2(t) = p1(σj(t)), R(t) = log r(t) +
∫ t

t0

p(s)
r(s)

ds,

q(t) =
eR(t)

r(t)
{qj(t)−K|f(t)|}

for every positive constant K̃.

Proof. Suppose that y(t) is an eventually positive solution of (13) on [t0,∞) for
some t0 > 0, and lim inf

t→∞
y(t) > 0. Hence, there exists k1 > 0 such that y(t) ≥ k1,

t ≥ t1 for some t1 ≥ t0. It follows from (13) that

(15)
(
eR(t)y′(t)

)′
+ qj(t)

eR(t)

r(t)
ϕj(y(σj(t))) ≤ eR(t)

r(t)
f(t), t ≥ t1.

Since ϕj(y(σj(t))) > ϕj(k1) ≡ K1, t ≥ t2 for some t2 ≥ t1, we can see from (H6)
that

(16)
(
eR(t)y′(t)

)′
≤ −eR(t)

r(t)
{K1qj(t)− |f(t)|} ≤ 0, t ≥ t2.

Then we consider y′(t) < 0 or y′(t) ≥ 0 for t ≥ t2.
Case 1. y′(t) < 0 for t ≥ t2. Setting

z(t) =
eR(t)y′(t)
ϕj(y(t))

,
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then

z′(t) =
(eR(t)y′(t))′

ϕj(y(t))
− eR(t)y′(t)

y′(t)ϕ′j(y(t))
ϕ2

j (y(t))
(17)

≤ −qj(t)
eR(t)

r(t)
ϕj(y(σj(t)))

ϕj(y(t))
+

eR(t)|f(t)|
r(t)ϕj(y(t))

− e−R(t)ϕ′j(y(t))z2(t)

≤ −qj(t)
eR(t)

r(t)
+

eR(t)|f(t)|
r(t)ϕj(k1)

− e−R(t)ϕ′j(k1)z2(t)

≤ −eR(t)

r(t)

{
qj(t)− |f(t)|

K1

}
− e−R(t)ϕ′j(k1)z2(t)

which contradicts the fact that z(t) is negative solution of (14).
Case 2. y′(t) ≥ 0 for t ≥ t2. Since y(t) > 0, y′(t) ≥ 0 eventually, we see that
y(σj(t)) ≥ k1 for some k1 > 0. Let

w(t) =
eR(t)y′(t)

ϕj(y(σj(t)))
.

By using eR(t)y′(t) is nonincreasing, we have

w′(t) =
(eR(t)y′(t))′

ϕj(y(σj(t)))
− eR(t)y′(t)

σ′j(t)y
′(σj(t))ϕ′j(y(σj(t)))
ϕ2

j (y(σj(t)))
(18)

≤ −qj(t)
eR(t)

r(t)
+

eR(t)|f(t)|
r(t)ϕj(y(σj(t)))

−e−R(σj(t))ϕ′j(y(σj(t)))σ′j(t)w
2(t)

≤ −eR(t)

r(t)

{
qj(t)− |f(t)|

ϕj(k1)

}

−e−R(σj(t))ϕ′j(k1)σw2(t), t ≥ t2.

Therefore w(t) is a positive solution of (14). This contradicts the hypothesis and
completes the proof. ¤

Theorem 4. If for some T ≥ 0 and for i = 1, 2, there exist H1,H2 ∈ H and some
c ∈ (a, b) such that T ≤ a < b and

1
H1(c, a)

∫ c

a

H1(s, a)
{

q(s)− 1
2
λ2

1(s, a)pi(s)
}

φ(s)ds(19)

+
1

H2(b, c)

∫ b

c

H2(b, s)
{

q(s)− 1
2
λ2

2(b, s)pi(s)
}

φ(s)ds > 0,

then eventually positive solution of (13) satisfies lim inf
t→∞

y(t) = 0, where φ(t) ∈
C1((T,∞); (0,∞)) and

λ1(s, t) =
φ′(s)
φ(s)

+ h1(s, t), λ2(t, s) =
φ′(s)
φ(s)

− h2(t, s).
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Proof. Suppose that y(t) is a positive solution of (13) on [t0,∞) for some t0 > 0, and
lim inf
t→∞

y(t) > 0. At first, we assume that y(t) > 0 on (a, b) for a, b ≥ t0. Proceeding

as the same proof of Theorem 3, we have the inequality (14). Multiplying (14) by
H2(t, s) and φ(s), integrating over [c, t] for t ∈ [c, b) and letting t → b−, we see
easily that

(20)
1

H2(b, c)

∫ b

c

H2(b, s)
{

q(s)− 1
2
λ2

2(b, s)pi(s)
}

φ(s)ds ≤ x(c)φ(c).

Similarly, multiplying (14) by H1(s, t)and φ(s), integrating over [t, c] for t ∈ (a, b]
and letting t → a+, we have

(21)
1

H1(c, a)

∫ c

a

H1(s, a)
{

q(s)− 1
2
λ2

1(s, a)pi(s)
}

φ(s)ds ≤ −x(c)φ(c).

Adding (20) and (21), we can lead to the contradiction. Pick up a sequence {Ti} ⊂
[t0,∞) such that Ti → ∞ as i → ∞. By assumptions, for each i ∈ N, there exists
ai, bi, ci ∈ [0,∞) such that Ti ≤ ai < ci < bi, and (19) holds with a, b, c replaced
by ai, bi, ci, respectively. From that, every nontrivial solution y(t) of (13) has no
zero ti ∈ (ai, bi). Noting that ti > ai ≥ Ti, i ∈ N, we see that y(t) is a eventually
positive solution of (13). This contradiction proves that Theorem 4 holds. ¤

Theorem 5. For some functions H1, H2 ∈ H, each T ≥ 0 and for i = 1, 2, if

(22) lim sup
t→∞

∫ t

T

H1(s, T )
{

q(s)− 1
2
λ2

1(s, T )pi(s)
}

φ(s)ds > 0

and

(23) lim sup
t→∞

∫ t

T

H2(t, s)
{

q(s)− 1
2
λ2

2(t, s)pi(s)
}

φ(s)ds > 0,

then eventually positive solution of (13) satisfies lim inf
t→∞

y(t) = 0, where φ(t) ∈
C1((T0,∞); (0,∞)) for some T0 > 0.
Proof. For any T ≥ t0, let a = T . In (22) we choose T = a. Then there exists c > a
such that for t ∈ (a, c]

(24)
∫ c

a

H1(s, a)
{

q(s)− 1
2
λ2

1(s, a)pi(s)
}

φ(s)ds > 0

(cf. [9,Theorem 8.8.5]). In (23) we choose T = c. Then there exists b > c such that
for t ∈ [c, b)

(25)
∫ b

c

H2(b, s)
{

q(s)− 1
2
λ2

2(b, s)pi(s)
}

φ(s)ds > 0.
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Combining (22) and (23) we obtain (19). The conclusion come from Theorem 4,
and the proof is completed. ¤

4. Oscillation Criteria for Eq. (E)

4.1. Oscillation results by Riccati inequality

We are going to use the following lemma which is due to Usami [5].

Lemma. If there exists a function φ(t) ∈ C1([T0,∞); (0,∞)) such that

∫ ∞

T1

(
p̄(t)|φ′(t)|β

φ(t)

) 1
β−1

dt < ∞,

∫ ∞

T1

1
p̄(t)(φ(t))β−1

dt = ∞,

∫ ∞

T1

φ(t)q̄(t)dt = ∞

for some T1 ≥ T0, then the Riccati inequality

x′(t) +
1
β

1
p̄(t)

|x(t)|β ≤ −q̄(t),

where β > 1, p̄(t) ∈ C([T0,∞); (0,∞)) and q̄(t) ∈ C([T0,∞);R), has no solution on
[T,∞) for all large T .

Combinig Theorems 1-3, we obtain following theorems.

Theorem 6. Assume that (H1)–(H5) hold, and that

(H7) there exists a positive constant K such that

qj(t) ≥ K|G(t)|.

If for i = 1, 2,
∫ ∞

T1

(
pi(t)φ′(t)2

φ(t)

)
dt < ∞,

∫ ∞

T1

1
pi(t)φ(t)

dt = ∞,

∫ ∞

T1

φ(t)Q(t)dt = ∞,

then every solution u(x, t) of (E), (B1) is oscillatory in Ω or satisfies (2), where

Q(t) =
eR(t)

r(t)

{
qj(t)−K|G(t)|

}
.

Theorem 7. Assume that (H1)–(H5) hold, and that

(H8) there exists a positive constant K such that

qj(t) ≥ K|G̃(t)|.
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If for i = 1, 2,
∫ ∞

T1

(
pi(t)φ′(t)2

φ(t)

)
dt < ∞,

∫ ∞

T1

1
pi(t)φ(t)

dt = ∞,

∫ ∞

T1

φ(t)Q̃(t)dt = ∞,

then every solution u(x, t) of (E), (B2) is oscillatory in Ω or satisfies (8), where

Q̃(t) =
eR(t)

r(t)

{
qj(t)−K|G̃(t)|

}
.

Example 1. We consider the problem

∂

∂t

(
et ∂

∂t
u(x, t)

)
+ et ∂

∂t
u(x, t)−

(
et + e

t
2

)
∆u(x, t)(26)

+2etu
(
x, t− π

2

)
= e

t
2 sin x sin t, (x, t) ∈ (0, π)× (0,∞),

u(0, t) = u(π, t) = 0, t > 0.(27)

Here n = k = m = 1 r(t) = et, p1(t) = e2t, p2(t) = e2t−π/2, q1(x, t) = 2et,
σ1(t) = t−π/2 and f(x, t) = et sin x sin t. It is easily verified that Φ(x) = sin x and

q1(t) ≡ 2et ≥ π

4
|e t

2 sin t| ≡ |G(t)|.

By choosing φ(t) = e−3t, the conditions of Theorem 6 are satisfied. Therefore, we
conclude that every solution u of the problem (26), (27) is oscillatory in (0, π) ×
(0,∞) or satisfies (2). For example, u = sin x sin t is such a solution.

Example 2. Consider the problem

∂

∂t

(
e−t ∂

∂t
u(x, t)

)
+ 2e−t ∂

∂t
u(x, t)−∆u(x, t)(28)

+e
t
2 u

(
x,

t

2

)
=

(
e−t + 1

)
cosx, (x, t) ∈

(
0,

π

2

)
× (0,∞),

−ux(0, t) = 0, ux

(π

2
, t

)
= −e−t, t > 0.(29)

Here n = k = m = 1 r(t) = e−t, p1(t) = et, p2(t) = et/2, q1(x, t) = 2e−t, a(t) = 1,
σ1(t) = t/2 and f(x, t) = (e−t + 1) cos x. A simple calculation yields G̃(t) = 2/π
and

q1(t) ≡ e
t
2 ≥ 2

π
≡ |G̃|.

By choosing φ(t) = e−
3
2 t we note that the conditions of Theorem 7 holds. Therefore,

every solution u of the problem (28), (29) is oscillatory in (0, π)× (0,∞) or satisfies
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(8). For example, u = e−t cos x is such a solution.

4.2. Interval oscillation results

Combining Theorems 1–2 and 4, we have following theorems.

Theorem 8. Assume that (H1)–(H5) and that (H7) hold. If for some T ≥ 0 and
for i = 1, 2, there exist H1,H2 ∈ H and some c ∈ (a, b) such that T ≤ a < b, (19)
with q(s) replaced by Q(s), then every solution u(x, t) of (E), (B1) is oscillatory in
Ω or satisfies (2).

Theorem 9. Assume that (H1)–(H5) and (H8) hold. If for some T ≥ 0 and for
i = 1, 2, there exist H1,H2 ∈ H and some c ∈ (a, b) such that T ≤ a < b, (19) with
q(s) replaced by Q̃(s), then every solution u(x, t) of (E), (B2) is oscillatory in Ω or
satisfies (8).

Combining Theorems 1–2 and 5, we obtain two theorems.

Theorem 10. Assume that (H1)–(H5) and (H7) hold. For some functions H1, H2 ∈
H, some T ≥ 0 and for i = 1, 2, if (22) and (23) with q(s) replaced by Q(s) hold,
then every solution u(x, t) of (E), (B1) is oscillatory in Ω or satisfies (2).

Theorem 11. Assume that (H1)–(H5) and (H8) hold. For some functions H1, H2 ∈
H, some T ≥ 0 and for i = 1, 2, if (22) and (23) with q(s) replaced by Q̃(s) hold,
then every solution u(x, t) of (E), (B2) is oscillatory in Ω or satisfies (8).

Remark. Our results in this paper hold without the hypotheses (H5) and (H6), if
condition σj(t) = t satisfied.
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