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Abstract. In this paper, we will establish some new oscillation criteria for the second-
order half-linear delay difference equation

∆(pn (∆xn)γ) + qnxγ
n−σ = 0, n ≥ n0,

where γ > 0 is a quotient of odd positive integers. Our results in this paper are sharp and

improve some of the well known oscillation results in the literature. Some examples are

considered to illustrate our main results.

1. Introduction

In this paper, we are concerned with oscillation of the second order half-linear
delay difference equation

(1.1) ∆(pn (∆xn)γ) + qnxγ
n−σ = 0, n ≥ n0,

where ∆ denotes the forward difference operator ∆xn = xn+1−xn for any sequence
{xn} of real numbers. Throughout this paper we assume that: σ is a fixed nonneg-
ative integer, γ > 0 is quotient of odd positive integers, {pn}∞n=n0

and {qn}∞n=n0
are

sequences of real numbers such that pn > 0, qn ≥ 0 and {qn}∞n=n0
has a positive

subsequence, and

(1.2)
∞∑

n=n0

(
1
pn

) 1
γ

= ∞,

or

(1.3)
∞∑

n=n0

(
1
pn

) 1
γ

< ∞.

By a solution of (1.1) we mean a nontrivial sequence {xn} which is defined for
n ≥ −σ and satisfies Eq.(1.1) for n = 0, 1, 2 · · · . Clearly if

(1.4) xn = An for n = −σ, · · · ,−1, n0 − 1,
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are given, then Eq.(1.1) has a unique solution satisfying the initial conditions (1.4).
A solution {xn} of (1.1) is said to be oscillatory if for every n1 > n0 there exists an
n ≥ n1 such that xnxn+1 ≤ 0. Otherwise it is called nonoscillatory. Equation (1.1)
is said to be oscillatory if all its solutions are oscillatory.

The problem of determining oscillation and nonoscillation of solutions of second
order difference equations has been a very active area of research in the last ten
years, and for surveys of recent results we refer to the monographs of Agrawal [2]
and Agarwal and Wong [3].

Half-linear equations derive their name from the fact that if {xn} is a solution,
then so is {cxn} for any constant c. Half-linear equations of the form

(1.5) ∆(pn (∆xn)γ) + qn+1x
γ
n+1 = 0, n = 0, 1, 2 · · · ,

and their generalizations have received a good bit of attention in the literature in the
last few years, and we cite as recent contributions the papers of Cheng [4], Chcchi
et al. [6], Dosly and Rehak [7], Liu and Cheng [15], Rehak [20], [21], Thandapani
et al. [27]-[29] and Wong and Agarwal [31]. Many of these approaches in the above
mentioned papers employ Riccati equations of various types to obtain criteria which
guarantee that any nontrivial solution is oscillatory or nonoscillatory.

When pn = 1, Eq.(1.1) reduces to the difference equation

(1.5) ∆ (∆xn)γ + qnxγ
n−σ = 0, n ≥ n0,

which has been considered by Thandapani et al. [30] and proved that: If

(1.6)
∞∑

l=n0

ql = ∞,

then every solution of Eq.(1.5).

For oscillation and nonoscillation of different classes of second order difference
equations we refer the reader to [5], [8], [10], [11], [14], [16]-[18], [24]-[27], [33]-[37].
In the oscillation of second order differential equations, the equation

(1.7) x
′′
(t) + q(t)f(x(t)) = 0, t ≥ t0,

has been tackled by many authors, see the survey papers [13], [32] which give over
300 references. It is known that, due to Kamenev [12] the average function Aλ(t)
defined by

(1.8) Aλ(t) =
1
tλ

t∫

t0

(t− s)λq(s)ds, λ ≥ 1,
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plays a crucial role in the oscillation of Eq.(1.7).

Philos [19] further extends Kamenev’s result by proving the following: Suppose
there exist continuous functions H, h : D ≡ {(t, s) : t ≥ s ≥ t0} → R such that

(i) H(t, t) = 0, t ≥ t0,

(ii) H(t, s) > 0, t > s ≥ t0,

and H has a continuous partial derivative on D with respect to the second variable
and satisfies

(1.9) −∂H(t, s)
∂s

= h(t, s)
√

H(t, s) ≥ 0.

Further, suppose that

(1.10) lim
t→∞

1
H(t, t0)

∫ t

t0

[H(t, s)q(s)− 1
4
h2(t, s)] ds = ∞,

then every solution of equation (1.7) oscillates.
By means of Riccati transformation techniques, we establish some new oscilla-

tion criteria and Kamanev-type oscillation criteria for Eq.(1.1) which can be con-
sidered as the discrete analogues of (1.8) and (1.10). In Section 2, we consider the
case when (1.2) holds and establish some sufficient conditions for oscillation of all
solutions of (1.1). In Section 3, we consider the case when (1.3) holds and establish
some sufficient conditions which guarantee that every solution {xn} of (1.1) oscil-
lates or converges to zero. Our results when (1.2) holds extend as well as improve
the results by Cheng [4], Dosly and Rehak [7], Liu and Cheng [15], Rehak [20], [21]
and Thandapani et al. [29], [30], and when (1.3) holds our results are essentially
new. Some examples are considered to illustrate the main results.

2. Oscillation criteria when (1.2) holds

In this section, we consider the case when (1.2) holds and establish some suffi-
cient conditions for oscillation of all solutions of (1.1).

First we consider the case when γ > 0 and ∆pn ≥ 0.

Theorem 2.1. Assume that (1.2) holds. If every solution of the delay difference
equation

(2.1) ∆yn +
qn

pn−σ

(
n− σ

2

)γ

yn−σ = 0, n ≥ n1 ≥ n0,

oscillates, then every solution of Eq.(1.1) oscillates for all γ > 0.

Proof. Suppose to the contrary that {xn} is an eventually positive solution of (1.1)
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such that xn > 0 and xn−σ > 0 for all n ≥ n1 ≥ n0. We shall consider only this
case, since the substitution yn = −xn transforms Eq.(1.1) into an equation of the
same form. From Eq.(1.1) we have

(2.2) ∆(pn (∆xn)γ) = −qnxγ
n−σ ≤ 0, n ≥ n1,

and so pn (∆xn)γ is an eventually nonincreasing sequence. We first show that
pn(∆xn)γ is eventually positive. Indeed, since {qn}∞n0

has a positive subsequence,
the nondecreasing sequence {pn(∆xn)γ} is either eventually positive or eventually
negative. Suppose there exists an integer n2 ≥ n1 such that pn2(∆xn2)

γ = c < 0
for n ≥ n2, then (2.2) implies that pn (∆xn)γ ≤ pn2(∆xn2)

γ = c, hence

∆xn ≤ c1/γ

(
1
pn

)1/γ

,

which implies that

(2.3) xn ≤ xn2 + c1/γ
n−1∑

i=n2

(
1
pi

)1/γ

→ −∞ as n →∞,

which contradicts the fact that xn > 0 for all large n. Hence pn(∆xn)γ is eventually
positive. Therefore, we see that there is some n1 ≥ n0 such that

(2.4) xn > 0, ∆xn ≥ 0, ∆(pn (∆xn)γ) ≤ 0, n ≥ n1.

From (2.4), since ∆(pn (∆xn)γ) ≤ 0, then we have ∆2xn ≤ 0 for n ≥ n0. If not there
exists n2 ≥ n1 such that ∆2xn > 0 and this implies that ∆xn+1 > ∆xn, so that
since ∆pn ≥ 0, pn+1 (∆xn+1)

γ
> pn+1 (∆xn)γ ≥ pn (∆xn)γ and this contradicts the

fact that {pn (∆xn)γ} is nonincreasing sequence, Then ∆2xn ≤ 0 and then {∆xn}
is nonincreasing sequence, and this implies that xn−xn1 =

n−1∑
k=n1

∆xk ≥ (n−n1)∆xn

which leads to xn ≥ n
2 ∆xn for n ≥ n2 ≥ 2n1 + 1. Then

(2.5) xn−σ ≥ n− σ

2
∆xn−σ, n ≥ n3 = n2 + σ.

Hence, from (2.5) and (1.1), we have

(2.6) ∆(pn (∆xn)γ) + qn

(
n− σ

2

)γ

(∆xn−σ)γ ≤ 0, n ≥ n3.

Set yn = pn (∆xn)γ , then yn > 0 and satisfies

(2.7) ∆yn +
qn

pn−σ

(
n− σ

2

)γ

yn−σ ≤ 0, n ≥ n3.
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But, then by Lemma 1 in [38] the delay difference equation (2.1) have an eventu-
ally positive solution also, which contradicts the assumption that every solution of
Eq.(2.1) oscillates. Then every solution of (1.1) is oscillatory. ¤

Theorem 2.1 shows that the oscillation of problem (1.1) is equivalent to the
oscillation of the delay difference equation (2.1). Thus, we can use the results of
oscillation of first order difference equations in [38] and the references cited therein
to obtain several oscillation criteria for Eq.(1.1). The details are left to the reader.

Note that Theorem 2.1 can not be applied to Eq.(1.1) when σ = 0, since the first-
order difference equation ∆yn + qn

pn

(
n
2

)γ
yn = 0 can not have oscillatory solutions,

since qn

pn

(
n
2

)γ
> 0. Then the retarded arguments σ appearing in the nonlinear

term plays important role in the generating qualitative behavior for equation (1.1)
different from that for the corresponding equations with σ = 0. It is of interest to
find some new oscillation criteria different from of the results in Theorem 2.1.

Next, we consider the case when γ ≥ 1 and ∆pn ≥ 0.
In the following by sing the Riccati transformation technique, we will give new

oscillation result of (1.1) which is the discrete analogy Philos-type (1.10), and from
it we derive the Kamenev-type oscillation condition which can be considered as the
discrete analogy of (1.8).

Theorem 2.2. Assume that (1.2) holds. Let {ρn}∞n=0 be a positive sequence. Fur-
thermore, we assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0} such
that:

(i) Hm,m = 0 for m ≥ 0;

(ii) Hm,n > 0 for m > n ≥ 0;

(iii) ∆2Hm,n = Hm,n+1 −Hm,n ≤ 0 for m ≥ n ≥ 0.

If

lim
m→∞

sup
1

Hm,n0

m−1∑
n=n0

[
Hm,nρnqn −

ρ2
n+1

4ρ̄n

(
hm,n

√
Hm,n − ∆ρn

ρn+1
Hm,n

)2
]

(2.8)

= ∞,

where

hm,n =
−∆2Hm,n√

Hm,n

, ρ̄n =
γ

(
n−σ

2

)γ−1
ρn

pn−σ

then every solution of Eq.(1.1) oscillates for all γ ≥ 1.

Proof. Suppose to the contrary that {xn} is an eventually positive solution of (1.1)
such that xn > 0 and xn−σ > 0 for all n ≥ n1 ≥ n0. We proceed as in the proof of
Theorem 2.1 to prove that (2.4) holds for n ≥ n1. Define {wn} by

(2.9) wn = ρn
pn (∆xn)γ

xγ
n−σ

,
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then wn > 0, and

(2.10) ∆wn = pn+1 (∆xn+1)
γ ∆

[
ρn

xγ
n−σ

]
+

ρn∆(pn (∆xn)γ)
xγ

n−σ

.

From (1.1) and (2.10), we have

(2.11) ∆wn = −ρnqn +
∆ρn

ρn+1
wn+1 −

ρnpn+1 (∆xn+1)
γ ∆(xγ

n−σ)
xγ

n+1−σxγ
n−σ

.

But, (2.4) implies that

(2.12) pn−σ (∆xn−σ)γ ≥ pn+1 (∆xn+1)
γ

, and xn+1−σ ≥ xn−σ,

and then from (2.11) and (2.12), we have

(2.13) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 −

ρnpn+1 (∆xn+1)
γ ∆(xγ

n−σ)
(
xγ

n+1−σ

)2 .

Now, by using the inequality (cf. [9, p. 39])

xγ − yγ > γyγ−1(x− y) for all x 6= y > 0 and γ > 1,

we obtain

(2.14) ∆(xγ
n−σ) = xγ

n+1−σ − xγ
n−σ > γ (xn−σ)γ−1 (xn+1−σ − xn−σ)

= γ (xn−σ)γ−1 (∆xn−σ) , γ > 1.

}
,

since ∆xn ≥ 0. Substituting from (2.14) in (2.13), we have

(2.15) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 − ρnpn+1

γ (xn−σ)γ−1 (∆xn−σ) (∆xn+1)
γ

(
xγ

n+1−σ

)2 .

From (2.5), (2.12) and (2.15), we have for n ≥ n3

(2.16) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 − γ

(
n− σ

2

)γ−1
ρn (pn+1)

2

pn−σ

(∆xn+1)
2γ

(
xγ

n+1−σ

)2 .

Hence,

(2.17) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 −

γ
(

n−σ
2

)γ−1
ρn

(ρn+1)
2
pn−σ

(pn+1)
2 (ρn+1)

2 (∆xn+1)
2γ

(
xγ

n+1−σ

)2 .

From (2.9) and (2.17), we have for n ≥ n3

(2.18) ρnqn ≤ −∆wn +
∆ρn

ρn+1
wn+1 − ρ̄n

(ρn+1)
2 w2

n+1.
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Therefore,

m−1∑
n=n3

Hm,nρnqn ≤ −
m−1∑
n=n3

Hm,n∆wn +
m−1∑
n=n3

Hm,n
∆ρn

ρn+1
wn+1 −

m−1∑
n=n3

Hm,n
ρ̄n

ρ2
n+1

w2
n+1,

which yields, after summing by parts,

m−1∑
n=n3

Hm,nρnqn+1 ≤ Hm,n3wn3

+
m−1∑
n=n3

wn+1∆2Hm,n +
m−1∑
n=n3

Hm,n
∆ρn

ρn+1
wn+1 −

m−1∑
n=n3

Hm,n
ρ̄n

(ρn+1)
2 w2

n+1

= Hm,n3wn3 −
m−1∑
n=n3

hm,n

√
Hm,nwn+1

+
m−1∑
n=n3

Hm,n
∆ρn

ρn+1
wn+1 −

m−1∑
n=n3

Hm,n
ρ̄n

(ρn+1)
2 w2

n+1

= Hm,n3wn3

−
m−1∑
n=n3

[√
Hm,nρ̄n

ρn+1
wn+1 +

ρn+1

2
√

Hm,nρ̄n

(
hm,n

√
Hm,n − ∆ρn

ρn+1
Hm,n

)]2

+
1
4

m−1∑
n=n3

(ρn+1)
2

ρ̄n

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2

Then,

m−1∑
n=n3

[
Hm,nρnqn −

ρ2
n+1

4ρ̄n

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

< Hm,n3wn3 ≤ Hm,0wn3 ,

which implies that

m−1∑
n=n3

[
Hm,nρnqn −

ρ2
n+1

4ρ̄n

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

< Hm,0

n3−1∑
n=n3

ρnqn+1 + Hm,0wn3 .

Hence

lim sup
m→∞

1
Hm,0

m−1∑
n=n3

[
Hm,nρnqn −

ρ2
n+1

4ρ̄n

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

< ∞,
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and this contradicts (2.8). The proof is complete. ¤

From Theorem 2.2, by choosing the sequence {Hm,n} in appropriate manners,
we can derive several oscillation criteria for (1.1). For instance, let us consider the
double sequence {Hm,n} defined by Hm,m = 0 and Hm,n = c, where c is a constant.
Then, we have the following result.

Corollary 2.1. Assume that (1.2) holds. Furthermore, assume that there exists a
positive sequence ρn}∞n=0 such that

(2.19) lim
n→∞

sup
n∑

l=n0

[
ρlql − pl−σ(∆ρl)2

4γ
(

l−σ
2

)γ−1
ρl

]
= ∞,

then every solution of Eq.(1.1) oscillates for all γ ≥ 1.

Note that from Corollary 2.1, if ρn = n and pn = 1, we have

lim
n→∞

sup
n∑

l=n0

[
lql − 1

4γ
(

l−σ
2

)γ−1
l

]
= ∞.

which improves the condition (1.6). Then Corollary 2.1 extend and improve the
results of Thandapani [30].

When γ = 1, Eq.(1.1) reduces to the linear delay difference equation

∆(pn∆xn) + qnxn−σ = 0, n ≥ n0,

and the condition (2.19) in Corollary 2.1 reduces to

(2.20) lim
n→∞

sup
n∑

l=n0

[
ρlql − (pl−σ) (∆ρl)2

4ρl

]
= ∞,

which is the same condition in Corollary 1 in [26]. Then Theorem 2.2 is an extension
of Theorem 1 and Corollary 1 in [26].

We can obtain different conditions for the oscillation of all solutions of (1.1) by
different choices of {ρn}. For instance, let ρn = nλ, n ≥ n0 and λ > 1. Then from
Corollary 2.1, we have the following result.

Corollary 2.2. Assume that (1.2) holds and

(2.21) lim
n→∞

sup
n∑

s=n0

[
sλqs − ps−σ((s + 1)λ − sλ)2

4γ
(

s−σ
2

)γ−1
sλ

]
= ∞,

then every solution of Eq.(1.1) oscillates for all γ ≥ 1.
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Next, let us consider the double sequence {Hm,n} defined by

(2.22) Hm,n = (m− n)λ, λ ≥ 1, m ≥ n ≥ 0,

Then Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0. Then
from Theorem 2.2, we have the following oscillation result of Kamenev-type.

Corollary 2.3. Assume that (1.2) holds. Furthermore, assume that there exists a
positive sequence {ρn}∞n=0 such that for all λ ≥ 1,

(2.23) lim
m→∞

sup
1

mλ

m−1∑
n=n0

(m− n)λ

[
ρnqn − (ρn+1)

2

4
−
ρn

Cm,n

]
= ∞,

where

(2.24) Cm,n =
(

∆ρn

ρn+1
+

λ(m− n− 1)λ−1

(m− n)λ

)2

, ρ̄n = γ

(
n− σ

2

)γ−1

ρn/ (pn−σ) ,

then every solution of equation (1.1) oscillates for all γ ≥ 1.

Corollary 2.4. Assume that all the assumptions of Corollary 2.3 hold, except the
condition (2.23) is replaced by

(2.25) lim
m→∞

sup
1

mλ

m−1∑
n=n0

(m− n)λρnqn = ∞,

and

(2.26) lim
m→∞

1
mλ

m−1∑
n=n0

(m− n)
(ρn+1)

2

ρ̄n

(
∆ρn

ρn+1
+

λ(m− n− 1)λ−1

(m− n)λ

)2

< ∞,

then every solution of Eq.(1.1) oscillates for all γ ≥ 1.

Next, let us consider the double sequence {Hm,n} defined by

(2.27) Hm,n =
(

ln
m + 1
n + 1

)λ

, λ ≥ 1, m ≥ n ≥ 0.

Then Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0. Then
from Theorem 2.2, we have the following result.

Corollary 2.5. Assume that all the assumptions of Theorem 2.2 hold, except the
condition (2.8) is replaced by

lim
m→∞

sup
1

(log(m + 1))λ

m∑
n=0

[(
log

m + 1
n + 1

)λ

ρnqn −
ρ2

n+1

4ρ̄n
Bm,n

]
= ∞,
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where

Bm,n =


 λ

n + 1

(
ln

m + 1
n + 1

)λ−2
2

− ∆ρn

ρn+1

√(
ln

m + 1
n + 1

)λ



2

,

then every solution of Eq.(1.1) oscillates for all γ ≥ 1.

Another Hm,n may be chosen as

(2.28) Hm,n = φ(m− n), m ≥ n ≥ 0,

Hm,n = (m− n)(λ) λ > 2, m ≥ n ≥ 0.

where φ : [0,∞) → [0,∞) is a continuously differentiable function which satisfies
φ(0) = 0 and φ(u) > 0, φ

′
(u) ≥ 0 for u > 0, and (m − n)(λ) = (m − n)(m − n +

1) · · · (m− n + λ− 1) and

∆2(m− n)(λ) = (m− n− 1)(λ) − (m− n)(λ) = −λ(m− n)(λ−1)

A corresponding corollary can also be stated.

Next, we give some new oscillation criteria for Eq.(1.1) without the assumption
that ∆pn ≥ 0.

Theorem 2.3. Assume that (1.2) holds. Furthermore, assume that there exists a
positive sequence {ρn} such that

(2.29) lim
n→∞

sup
n∑

l=n0

[
ρlql − (pl−σ) (∆ρl)2

23−γρl

]
= ∞,

then every solution of Eq.(1.1) oscillates for all γ ≥ 1.

Proof. Suppose to the contrary that {xn} is an eventually positive solution of (1.1)
such that xn > 0 and xn−σ > 0 for all n ≥ n0. As in the proof of Theorem 2.1
we have that ∆xn ≥ 0 for n ≥ n1. Defining {wn} by (2.9) then as in the proof of
Theorem 2.2 we obtain

(2.30) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 −

ρnpn+1 (∆xn+1)
γ ∆xγ

n−σ(
xγ

n+1−σ

)2 .

Now, by using the inequality

xγ − yγ > 21−γ(x− y)γ for all x > y > 0 and γ > 1,

we have

(2.31) ∆xγ
n−σ = xγ

n+1−σ − xγ
n−σ > 21−γ(xn+1−σ − xn−σ)γ = 21−γ (∆xn−σ)γ

.
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Substituting from (2.31) in (2.30), we obtain

(2.32) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 − 21−γρnpn+1

(∆xn+1)
γ (∆xn−σ)γ

(
xγ

n+1−σ

)2 .

Again, from (2.12) in (2.32), we obtain

(2.33) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 − 21−γρn

(pn+1)
2

(pn−σ)
(∆xn+1)

2γ

(
xγ

n+1−σ

)2 .

Using (2.9) in (2.33), we get

(2.34) ∆wn ≤ −ρnqn +
∆ρn

ρn+1
wn+1 − 21−γ ρn

(ρn+1)
2

1
(pn−σ)

w2
n+1.

The remainder of the proof is by completing the square and similar to that of
Theorem 2.2 and hence is omitted. ¤

From Theorem 2.3 if ρn = n and pn = 1, then Theorem 2.3 reduces to

lim
n→∞

sup
n∑

l=n0

[
lql − 1

23−γ l

]
= ∞,

which also improves the condition (1.6). Then Theorem 2.3 also improve the results
in [30].

Note that from Theorem 2.3, we can obtain different conditions for the oscilla-
tion of all solutions of Eq.(1.1) when (1.2) holds by different choices of {ρn}. Let
ρn = nλ, n ≥ n0 and λ > 1 is a constant, we have the following result.

Corollary 2.6. Assume that (1.2) holds and

lim
n→∞

sup
n∑

s=n0

[
sλqs − (ps−σ) ((s + 1)λ − sλ)2

23−γsλ

]
= ∞,

then every solution of Eq.(1.1) oscillates for all γ ≥ 1.

The following example illustrates our main results.

Example 2.1. Consider the half-linear discrete Euler equation

(2.35) ∆ ((∆xn)γ) +
µ

n2
(xn−σ)γ = 0, n ≥ 1,

where µ > 1
23−γ . Then, pn = 1, σ > 0. If we take ρn = n, then we have

n∑
s=n0

[
sqs − ps−σ((s + 1)− s)2

23−γs

]
=

n∑
s=1

[
s

µ

s2
− 1

23−γs

]
=

n∑
s=1

23−γµ− 1
s

→∞,
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as n → ∞ since µ > 1
23−γ . By Corollary 2.6, every solution of (2.35) oscillates.

In the case whenγ = 1, µ ≤ 1
4 , it is known that [37], (2.35) has a nonoscillatory

solution. Hence, Theorem 2.3 and Corollary 2.6 are Sharp. Note that none of the
results by Cheng [4], Dosly and Rehak [7], Liu and Cheng [15], Rehak [20], [21] and
Thandapani et al. [29], [30] can be applied to Eq.(2.35).

Note that when γ = 1, Eq.(1.1) reduces to the linear delay difference and the
condition (2.29) in Theorem 2.3 reduces to

lim
n→∞

sup
n∑

l=n0

[
ρlql − (pl−σ) (∆ρl)2

4ρl

]
= ∞,

which is the same condition in Corollary 1 in [26].

The proof of the following theorems are similar to that of the proof of Theorem
2.2 by using (2.34) and hence is omitted.

Theorem 2.4. Assume that all the assumptions of Theorem 2.2 hold, except the
sequence {ρ̄n}∞n=0 is being replaced by Pn = 23−γρn/ (pn−σ) . Then every solution
of Eq.(1.1) oscillates for all γ ≥ 1.

3. Oscillation criteria when (1.3) holds

In this section, we consider the case when (1.3) holds and establish some suffi-
cient conditions which guarantee that every solution of (1.1) oscillates or converges
to zero.

First, we consider the case when γ ≥ 1 and ∆pn ≥ 0.

Theorem 3.1. Assume that (1.3) holds and let {ρn} be a positive sequence. Fur-
thermore, assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0} be as
defined in Theorem 2.2 such that (2.8) and

(3.1)
∞∑

n=n0

(
1
pn

n−1∑

i=n0

qi

) 1
γ

= ∞,

then every solution of Eq.(1.1) oscillates or limn→∞ xn = 0.

Proof. Suppose to the contrary that {xn} is an eventually positive solution of (1.1)
such that xn > 0 and xn−σ > 0 for all n ≥ n1. We shall consider only this case,
since the substitution yn = −xn transforms Eq.(1.1) into an equation of the same
form. From Eq.(1.1) we have

(3.2) ∆(pn (∆xn)γ) = −qnxγ
n−σ ≤ 0, n ≥ n0,

and so {pn(∆xn)γ} is an eventually nonincreasing sequence. Since {qn} has a
positive subsequence, either {∆xn} is eventually negative or eventually positive.
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If {∆xn} is eventually positive, we are then back to the case where (2.4) holds.
Thus the proof of Theorem 2.2 goes through, and we obtain a contradiction. If
{∆xn} is eventually negative. Then limn→∞ xn = b ≥ 0. We assert that b = 0.
If not then xγ

n−σ → bγ > 0 as n → ∞, and hence there exists n2 ≥ n1 such that
xγ

n−σ ≥ bγ . Therefore from (3.2) we have

∆(pn (∆xn)γ) ≤ −qnbγ .

Define the sequence un = pn (∆xn)γ for n ≥ n2. Then we have

∆un ≤ −bγqn.

Summing the last inequality from n2 to n− 1, we have

un ≤ un2 − bγ
n−1∑
s=n2

qs ≤ −bγ
n−1∑
s=n2

qs.

Summing the last inequality from n3 to n we obtain

(3.3) xn+1 ≤ xn3 − b

n∑
s=n3

(
1
ps

s−1∑

i=n2

qi

) 1
γ

.

Condition (3.1) implies that {xn} is eventually negative, which is a contradiction.
Thus {xn} converges to zero. The proof is complete. ¤

From Theorem 3.1, as in Section 2, we can provide several sufficient conditions
which guarantee that every solution of Eq.(1.1) oscillates or converges to zero. Due
to the limited space we state the following corollary and the remainder of the results
are left to the reader.

Corollary 3.1. Assume that (1.3) and (3.1) hold, and let {ρn} be a positive
sequence such that (2.29) holds. Then every solution of Eq.(1.1) oscillates or
limn→∞ xn = 0.

The following examples illustrates the main results in this section.

Example 3.1. Consider the half-linear difference equation

(3.4) ∆((n + 1)2∆xn) + µxn−1 = 0, n ≥ 1,

where µ > 1/4. Then, pn = (n + 1)2, γ = 1 and σ = 1. If we take ρn = n, then one
can easily see that (3.1) holds, and

n∑
s=n0

[
sqs − ps−1((s + 1)− (s))2

4s

]
=

n∑
s=1

[
µs− s2

4s

]

=
n∑

s=1

(4µ− 1)
4

s →∞,
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as n → ∞. Thus, Corollary 3.1 asserts that every solution of (3.4) oscillates or
xn → 0 as n → ∞. Note that none of the above mentioned papers can be applied
to (3.4).
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