• Title/Summary/Keyword: orthotropy

Search Result 61, Processing Time 0.021 seconds

Rotation of Orthotropy Axes of Steel Sheets by Tensile Elongation (인장변형에 의한 강판의 직교이방성 대칭축의 회전)

  • 인정제;김권희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.33-43
    • /
    • 1994
  • A series of tensile tests have been performed to investigate the hardening behavior of rolled steel sheets. Tensile tests consist of three stages. At the 1st stage, full size tensile specimens were prestrained in the direction of rolling, then mid-sized tensile specimens were cut from the gauge sections of the full size specimens at angles to the rolling direction. At the 2nd stage, mid-sized specimens were prestrained by predetermined magnitudes of strains and miniature tensile specimens were prepared from each of the mid-sized specimens at every 10 degrees. At the final stage, from tests on miniature tensile specimens the hardening behavior of the prestrained sheets has been investigated. According to the experimental results, orthotropic symmetry is reserved during tensile elongation, and one of the orthotropy axes is continuously rotated to specimen axis. Existing theories seem to fail to explain the rotation of orthotropy axis. A new phenomenological model is proposed to explain the strain induced rotation of orthotropy axes.

  • PDF

Rotation of Orthotropy Axes with Work Hardening of Anisotropic Sheet Metals (이방성 금속판재의 가공경화에 따른 직교대칭축의 회전)

  • 김권희;인정제
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.320-326
    • /
    • 1996
  • Based upon experimental observations the authors have shown in the previous studies that the orientations of orthotropy axes of anisotropic sheet metals are subjected to change during tensile loading at angles to the rolling direction. To predict the rotations of orthotropy axes under general plane stress conditions, a simple phenomenological model is proposed which accounts for the effect of work hardening. Predictions from the model are compared against the experiments for 0%, 3%, and 6% of 1st tensile prestrains in the rolling direction and 2nd tensile prestrains at 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$ to the 1st prestrains axis. The model showed good agreements with the experimental observations. A new interpretation of the experimental data is suggested regarding the rotations of orthotropy axes.

  • PDF

Study of anisoptopy of sheet metals (압연강판의 이방성에 관한 연구)

  • 인정제
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.153.1-156
    • /
    • 1999
  • Based upon the experimental data from multi-stage tensile loading at angles to the rolling direction of steel sheets, anisotropic hardening rules are proposed. Experiments show that orthotropic anisotropy is maintained and the orientations of orthotropy axes are changed during tensile loading. A phenomenological model is proposed which includes the rotations of orthotropy axes, work hardening and kinematic hardening. Using the model, uniaxial tensile stress, R-value and tensile necking strain are predicted and compared with the experimental data.

  • PDF

Hardening of Steel Sheets with Orthotropy Axes Rotations and Kinematic Hardening

  • Hahm, Ju-Hee;Kim, Kwon-Hee;Yin, Jung-Je
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 2000
  • Anisotropic work hardening of cold rolled low carbon steel sheets is studied. The experiments consist of two stage tensile prestraining and tensile tests. At the first prestraining, steel sheets are streteched along the rolling direction by 3% and 6% tensile strains. The second prestrains are at 0${\cric}$, 30${\cric}$, 60${\cric}$to the rolling directions by varying degrees. Tensile tests are performed on the specimens cut from the sheets after the two stage prestraining. A theoretical framework on anisotropic hardening is proposed which includes Hill's quadratic yield function, ziegler's kinematic hardening rule, and Kim and Yin's assumption on the rotation of orthotropy axes. The predicted variations of R-values with second stage tensile strain are compared with the experimental data.

  • PDF

Transient thermal stresses of orthotropic functionally graded thick strip due to nonuniform heat supply

  • Ootao, Yoshihiro;Tanigawa, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.559-573
    • /
    • 2005
  • This paper is concerned with the theoretical treatment of transient thermal stresses involving an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under the state of plane strain. Some numerical results for the temperature change, the displacement and the stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity of the material is investigated.

Rotation of Orthotropy Axes under Plane Stress (평면응력하에서의 직교이방성 대칭축의 회전)

  • 인정제;김권희
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.320-334
    • /
    • 1994
  • A set of full size cold rolled steel sheets has been prestrained in the direction of rolling by uniform tensile elongation of 3% and 6%. Then mid-sized tensile specimens were cut from each of the full size sheets at 30, 45, 60 and 90 degrees to the rolling direction. The mid-sized tensile specimens were then prestrained again by uniform tensile elongation by 1%, 2%, 5%, 10% and 15%. finally, miniature tensile specimens were prepared from each of the mid-sized specimens at every 10 degrees to the specimen axis. From the tensile tests on miniature specimens material's hardening behavior under non-proportional loading has been investigated. There are a number of new observations which has not been known to the authors before current work. One of them is continuous reservation of orthoropic symmetry during tensile elongation of mid-sized specimens. Another is continuous rotations of orthotropy axes. Existing theories seem to fail to explain this observations. A new model is proposed in relation to the rotation of orthotropy axes.

  • PDF

Prediction of Sheet Metal Necking with Anisotropic Hardening (이방성 가공경화를 고려한 냉간 압연강판의 넥킹 예측)

  • 인정제;김권희;함주희
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.160-166
    • /
    • 2001
  • Uniaxial necking is studied for steel sheets with initial anisotropy. The state of anisotropy is continuously altered by subsequent tensile deformation at angles to the rolling direction. The orientations of orthotropy axes are changed before the onset of necking. A simple hardening rule which incorporates the rotations of orthtropy axes is proposed and the necking strains are predicted at angles to the rolling direction. Predicted results show good agreement with the experiments.

  • PDF

Analysis of a Crack Approaching Two Circular Holes in an Orthotropic Infinite Plate (직교이방성 무한평판 내부의 두 원공사이에 존재하는 균열의 해석)

  • Cheong, S.K.;Hong, C.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1710-1718
    • /
    • 1993
  • This paper investigates the problem of a crack approaching two circular holes in an orthotropic infinite plate. The stress intensity factors were obtained by using the modified mapping-collocation method. The present results show excellent agreement with existing solutions for a crack approaching two circular holes in an isotropic infinite plate. In the numerical examples, various types of cross-ply laminated composites were considered. To investigate the effect of orthotropy and geometry(d/R and a/(d-R)) on crack tip singularity, stress intensity factors were considered as functions of the normalized crack length. It is expected that the modified mapping-collocation method can be applied to the analysis of various kinds of cracks existing around the stress-concentration region of composite laminate.

Evaluation of Effective Orthotropic Creep Parameters for Perforated Sheets (다공질 박판의 유효 직교 이방성 크리프 파라미터 계산)

  • Chung Ilsup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.79-88
    • /
    • 2005
  • Evaluating the effective properties of materials containing various types of in-homogeneities is an important issue in the analysis of structures composed of those materials. A simple and effective method for the purpose is to impose the periodic displacement boundary conditions on the finite element model of a unit cell. Their theoretical background is explained based on the purely kinematical relations in the regularly spaced in-homogeneity problems, and the strategies to implement them into the analysis and to evaluate the homogenized material constants are introduced. The creep behavior of a thin sheet with square arrayed rectangular voids is characterized, where the orthotropy is induced by the presence of the voids. The homogenization method is validated through the comparison of the analysis of detailed model with that of the simplified one with the effective parameters.

Theoretical analysis of tensile stresses and displacement in orthotropic circular column under diametrical compression

  • Tsutsumi, Takashi;Iwashita, Hiroshi;Miyahara, Kagenobu
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.333-347
    • /
    • 2011
  • This paper shows the solution for an orthotropic disk under the plane strain condition obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties in representing the concentrated force because the specimens must be divided into finite elements during calculation. On the other hand, the method shown in this study can exactly represent this force. Some numerical results are shown and compared with those obtained under the plane stress condition for both stress and displacement. This comparison shows that the differences between the tensile stresses occurred under the plane strain condition and also that the differences under a plane stress condition increase as the orthotropy ratio increases for some cases.