• Title/Summary/Keyword: orthogonal experimental design

Search Result 192, Processing Time 0.037 seconds

A Study on the Finite Element Analysis of Chip Formation in Machining (절삭가공시 집형성의 유한요소 해석에 관한 연구)

  • 김남용;박종권;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.973-976
    • /
    • 1997
  • Process behavior in metal cutting results from the chip formation process which is not easily observable and measurable during machining. By means of the finite element method chip formation in orthogonal metal cutting is modeled. The reciprocal interaction between mechanical and thermal loads is taken into consideration by involving the thermo-viscoplastic flow behavior of workpiece material. Local and temporal distributions of stress and temperature in the cutting zone are calculated depending on the cutting parameters. The calculated cutting forces and temperatures are compared with the experimental results obtarned from orthogonal cutting of steel AISl 4140. The model can be applied in process design for selection of appropriate tool-workpiece combination and optimum cutting conditions in term of mechanical and thermal loads.

  • PDF

Optimum mixture of high performance hybrid fiber reinforced concrete using fractional experimental design by orthogonal array (일부실시 직교배열 실험설계에 의한 고성능 하이브리드 섬유보강 콘크리트 배합 최적화)

  • Park, Tae-Hyo;Noh, Myung-Hyun;Park, Choon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.341-344
    • /
    • 2004
  • In the present research, slump, modulus of rupture (MOR) and flexural toughness $(I_{30})$ of high performance hybrid fiber reinforced concrete (HPHFRC) mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber) and replaced with silica fume were assessed with the analysis of variance (ANOVA). Steel fiber was a considerable significant factor in aspect of the response values of MOR and boo Based on the significance of factors related to response values from ANOVA, following assessments were available; Slump decrease: carbon fiber >> steel fiber > silica fume; MOR: steel fiber > silica fume > carbon fiber; $I_{30}$: steel fiber > carbon fiber > silica fume. Steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $5.0\%$, and Steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $2.5\%$ were obtained as the most optimum mixture.

  • PDF

A Multistrategy Learning System to Support Predictive Decision Making

  • Kim, Steven H.;Oh, Heung-Sik
    • The Korean Journal of Financial Studies
    • /
    • v.3 no.2
    • /
    • pp.267-279
    • /
    • 1996
  • The prediction of future demand is a vital task in managing business operations. To this end, traditional approaches often focused on statistical techniques such as exponential smoothing and moving average. The need for better accuracy has led to nonlinear techniques such as neural networks and case based reasoning. In addition, experimental design techniques such as orthogonal arrays may be used to assist in the formulation of an effective methodology. This paper investigates a multistrategy approach involving neural nets, case based reasoning, and orthogonal arrays. Neural nets and case based reasoning are employed both separately and in combination, while orthoarrays are used to determine the best architecture for each approach. The comparative evaluation is performed in the context of an application relating to the prediction of Treasury notes.

  • PDF

Springback Analysis of High Strength Steel Using Taguchi Method (다구치 실험계획법을 이용한 고강도 강판의 스프링백 분석)

  • Jeon, Tae-Bo;Kim, Hyung-Jong
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.80-85
    • /
    • 2006
  • HSS (high strength steel) is widely applied to reduce the weight but improve the strength in automobiles. This research has been peformed to secure a methodology to accurately predict the springback of HSS for successful tool and process designs in sheet stamping operations. We first peformed U-draw bending test to evaluate the springback characteristic. We then evaluated forming and springback processes using the 1-row model of the finite element method. Based on the peformance measure and parameters selected, extensive analyses of the factor effects on the springback have been made using experimental design concepts. We specifically selected Taguchi's orthogonal array, $L_{18}(2^1{\times}3^7)$, and the optimal level combination of the factors have been drawn from the analysis.

  • PDF

Optimum Working Condition of Side Wall End Milling Using Response Surface Methodology (측벽 엔드밀 가공 시 반응표면법을 이용한 최적 가공조건)

  • Hong, Do-Kwan;Choi, Jae-Gi;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1097-1104
    • /
    • 2008
  • Working condition is one of the most important factors in precision working. In this study, we optimized the vibration acceleration of working progress direction using RSM(response surface methodology) by table of orthogonal array. RSM was well adapted to make analytic model for minimizing vibration acceleration, created the objective function and saved a great deal of computational time. Therefore, it is expected that the proposed optimization procedure using RSM can be easily utilized to solve the optimization problem of working condition. The experimental results of the surface roughness and vibration acceleration showed the validity of the proposed working condition of side wall end-milling as it can be observed.

Shape Optimization for Improving Fatigue Life of a Lower Control Arm Using the Experimental Design (실험계획법을 적용한 Lower Control Arm의 피로수명 형상 최적설계)

  • 김민수;이창욱;손성효;임홍재;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.161-166
    • /
    • 2003
  • In order to improve the fatigue lift of a lower control arm in the vehicle suspension, a new shape optimization procedure is presented. In this approach, the shape control point concept is introduced to reduce the numbers of shape design variables. Also, the two-level orthogonal way is employed to evaluate the design sensitivity of fatigue life with respect to those shape design variables, because the analytical design sensitivity information is not directly supplied from the commercial CAE softwares. In this approach, only the six design variables are used to approximate the shape of lower control arm. Then, performed are only 10 fatigue life analyses including the baseline design, 8 DOE models and the final design. The final design, the best combination obtained from the sensitivity information, can maximize the fatigue lift nearly two times as that of the baseline design, while reducing the 12 percentage of weight than it.

Empirical Design Method for the Damping Force Characteristics of Shock Absorbers (쇽압쇼바 감쇠력 특성의 실험적 설계법 연구)

  • Baek, W.K.;Kim, C.M.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • A Shock absorber is one of the most important components in vehicle suspension systems. In general, many repeated analyses are required for the design of a shock absorber to satisfy the suspension characteristics of a specific automobile, like fluid flow analysis and mechanical analysis. The purpose of this study is to develop a fast design tool for shock absorber designers. One of the efficient solutions for this can be an empirical design method considering phenomenological effects from the shock absorber design variables. In order to extract the shock absorber's experimental characteristics, we used Taguchi method. This method showed that which design variables have major effects for the shock absorber's damping characteristics. This empirical design method also showed the direction of the design changes to satisfy the designer's intension.

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

Analysis of Shaping Parameters Influencing on Dimensional Accuracy in Single Point Incremental Sheet Metal Forming (음각 점진성형에서 치수정밀도에 영향을 미치는 형상 파라미터 분석)

  • Kang, Jae Gwan;Kang, Han Soo;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries. However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case. It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of $L_8(2^7)$ are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.

Optimal Design for Improved Rotation Latch System Performance (로테이션 래치 시스템 성능 향상을 위한 최적 설계)

  • Jang, Jae-Hwan;Kim, Jin-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.102-106
    • /
    • 2015
  • In this paper, we study the optimal design for improved rotation latch system performance. The factors affecting the Torque generated in the armature were chosen as design variables. Utilizing the vertical matrix, the orthogonal array table was created to predict the results through minimal analysis. To confirm the Torque generation amount, by utilizing the commercial electromagnetic analysis software MAXWELL, finite element analysis was performed. The approximation method and experimental design through the commercial PIDO tool PIAnO for optimal design and calculations were utilized to perform experiments using an optimization method with evolutionary algorithms. Using the approximation model, design factors were determined that can maximize the torque generated in the armature, and the simulation was performed.