• Title/Summary/Keyword: orthogonal experimental design

Search Result 192, Processing Time 0.021 seconds

Application of Experimental Design Methods for Minimum Weight Design and Sensitivity Evaluation of Passive-Type Deck Support Frame for Offshore Plant Float-Over Installation (해양플랜트 플로트오버 설치 공법용 수동형 갑판 지지 프레임의 최소중량설계와 민감도 평가를 위한 실험계획법 응용)

  • Kim, Hun Gwan;Lee, Kangsu;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.161-171
    • /
    • 2021
  • This paper presents the findings of a comparative study on minimum weight design and sensitivity evaluation using different experimental design methods for the structural design of an active-type deck support frame (DSF) developed for the float-over installation of an of shore plant topside. The thickness sizing variables of the structural members of a passive-type DSF were considered the design factors, and the output responses were defined using the weight and strength performances. The design of the experimental methods applied in the comparative study of the minimum weight design and the sensitivity evaluation were the orthogonal array design, Box- Behnken design, and Latin hypercube design. A response surface method was generated for each design of the experiment to evaluate the approximation performance of the design space exploration according to the experimental design, and the accuracy characteristics of the approximation were reviewed. Regarding the minimum weight design, the design results, such as numerical costs and weight minimization, of the experimental design for the best design case, were evaluated. The Box- Behnken design method showed the optimum design results for the structural design of the passive-type DSF.

The Optimal Parameter Design of the stone surface equipment Using the Taguchi Method (다구찌 방법을 이용한 석재표면처리장치의 최적표면가공조건 선정에 관한 연구)

  • 김득주;서장훈;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.251-262
    • /
    • 2004
  • There is boner process of stone manufacturing to become quality down of stone to consolidated micro crack appearance of stone surface and biotite by fire that is to be route process in stone surface by flame of LPG. And then, it is develop that stone surface process equipment by automation for the work method of boner process can be substitute work method by shotball blasting. To developement of equipment, There is to be down noise and dust. Acording to remove calamity growth hazardous substance in the work environment, there is to solve workplace avoidance factor. We have taken Taguchi's parameter design approch, specifically orthogonal array, and determined the optimal levels of stone surface through analysis of the experimental results using SIN ratio.

The Robust Design of Low Noise Intake System with Experimental 4-poles (실험 4단자정수를 이용한 저소음 흡기계의 강건 최적 설계)

  • Joe, Yong-Goo;Oh, Jae-Eung;Lee, You-Yub;Kim, Heung-Seob
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.405-412
    • /
    • 2002
  • Recently, regulations of the government and concerns of people give rise to the interest in exhaust and intake noise of passenger car as much as other vehicles. In these demands, performance prediction software with hybrid method was developed at first. Secondly, robust design was used for improving the noise reduction capacity of intake system with the performance prediction software. On the basis of the existing design, length and radios of each component that was thought to effect on the capacity of intake system was selected. The factors were arranged by using L18 table of orthogonal array and optimum value was obtained.

Optimal Design of Rotor Pole of BLDC Motor Using Taguchi Method and FEM (Taguchi 방법과 FEM을 이용한 BLDC 전동기 회전자 자극의 최적설계)

  • Kim, J.H.;Lee, H.K.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.40-42
    • /
    • 2002
  • This paper presents the optimal design of BLDC motor keeping the average torque and cogging toruqe of the initial model while minimizing the volume of magnet pole by FEM and Taguchi method. Experimental tests are performed by Finite element method, and the second order polynomial equations are obtained from FEM results due to design parameter variation referred to orthogonal arrays by Taguchi. The presented optimization shows a big reduction of computation time and a largely reduced volume of magnet pole.

  • PDF

A Parameter Design Approach to Solve Some Inherent Problems of a Pilot Cola Machine (Parameter Design 에 의한 Prototype 콜라머신 설계상의 문제해결)

  • Jeon, Tae-Bo
    • IE interfaces
    • /
    • v.5 no.1
    • /
    • pp.25-34
    • /
    • 1992
  • A study to analyze and solve inherent problems of a pilot cola machine has been presented in this paper. The product considered in this study involves at least 16 variables(factors) which simultaneously affect the product performance. For this multi-variate statistical problem, we first carefully examined their relationships and selected four variables considered as the most important. We have taken Taguchi's parameter design approach, specifically the $L_8\:(2^7)$ orthogonal array, and determined the optimal levels of the selected variables through the analysis of the experimental results. Finally, we conclude this study with providing general comments drawn from the analysis and verification experiments.

  • PDF

Stiffness and Strength Evaluation of the CFRP Display Wall mount Arm (CFRP 디스플레이 월마운트암의 강성과 구조강도의 평가)

  • Jang, Woongeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.147-154
    • /
    • 2019
  • Recently as flat display panels are getting narrower, TV wall mounts also become slimmer for interior design issue. In this study CFRP(Carbon Fiber Reinforced Plastic) was used for TV wall mount to satisfy slim arm design along with enough strength and low weight. The 16 staking sequences was made with orthogonal array to reduce experimental cases. Strength analysis of the TV wall mount arm made of CFRP laminate was studied on condition of staking sequences using FEA(Finite Element Analysis) and stiffness and strength of those cases were evaluated using deflection and Tsai-Wu's Failure criterion. The result showed that [$-45^{\circ}/90^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}$] lay up case was suitable for the wall mount arm staking design from the criteria of deflection and Tsai-Wu's Failure Index.

An Experimental Study on the Optimum Design of Sirocco Fan by Using Taguchi Method (다구찌 방법을 이용한 시로코 홴의 최적설계에 관한 실험적 연구)

  • Kim, Jang Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.761-768
    • /
    • 1999
  • This paper is studied to find the optimum condition of double-inlet Sirocco fan installed in an indoor PAC for low noise operation by the Taguchi method. The goal of this study is to obtain the best combination of each control factor which results in a desired flowrate of Sirocco fan with minimum variability. In this study, the parameter design of the Taguchi method is adopted for robust design by the dynamic characteristic analysis using orthogonal arrays and S/N ratios. The flowrate measurements are conducted by using a multiple-nozzle-type fan tester according to the orthogonal array L9($3^4$). The results of this study can be summarized as follows ; (i) The optimum condition of control factor is a set of where A is an inner to outer diameter ratio($D_1/D_2$), B is a width to outer diameter ratio($L/D_2$), C is a blade attachment angle(${\theta}$) and D is a number of blade(Z), (ii) The flowrate under the optimum condition satisfies the equation $y=0.0384{\cdot}M$ where M is a signal factor, namely number of revolution. The flowrate performance improves about 7.3% more largely as compared with the current condition, which results in about 35RPM reduction of number of revolution for the target flowrate $18.5m^3/min$, and (iii) The sensitivity analysis shows that the major factors in contribution to flowrate performance are A, B, and D ; the percentage contributions of each control factor are 44.01%(Z), 26.77%($D_1/D_2$) and 20.42%($L/D_2$).

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

Design and evaluation of binocular type six-component load cell by using experimental technique (실험계획법을 이용한 쌍안경식 6축 로드셀의 설계 및 상호간섭 오차 평가)

  • Kang, Dae-Im;Kim, Gab-Sun;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1921-1930
    • /
    • 1997
  • This paper presents the effective technique to design a six-axis load cell by using experimental design with an orthogonal array. A binocular structure is used as a basic sensing element for a load cell instead of the parallel plate structure. The finite element method is adopted to obtain strain distributions of the sensing element, and by doing the analysis of variances, its results are utilized in determining the factor which is more influential to the output strain. Calibration test results show that the developed six-axis loa cell with the maximum capacities of 196 N in forces and 19.6 N. m in moments is evaluated to be useful with the coupling error less than 2.5%.