• Title/Summary/Keyword: organoclay

Search Result 80, Processing Time 0.027 seconds

Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites (폴리우레탄/유기화 점토 나노복합체의 모폴로지와 기계적 물성)

  • Park, Kyu-Nam;Yoon, Kwan-Han;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.224-231
    • /
    • 2007
  • Polyurethane (PU) was prepared with the compositions of polytetramethylene glycol (PTMG) having two different molecular weight (250, 1000 g/mol). The optimum composition of PTMG 250/1000 was 60/40 based on the mechanical properties. PU/organoclay nanocomposites were prepared with several kinds of organoclay. The mechanical properties of nanocomposite prepared with 93A were considerable. The improvement in tensile strength and modulus for PU/organoclay nanocomposite with the application of ultrasound compared to the PU/organoclay nanocomposite without the application of ultrasound was factors of 1.2, and hardness (shore A type) increased from 90 to 95. The difference in thermal degradation was not observed. The results of transmission electron micrographs and X-ray measurements suggest that the intercalated organoclay in PU matrix was observed.

Silicate dispersion and rheological properties of high impact polystyrene/organoclay nanocomposites via in situ polymerization

  • Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.227-233
    • /
    • 2008
  • High impact polystyrene (HIPS)/organoclay nanocomposites via in situ polymerization were synthesized and their rheological properties were investigated. For the study, two types of organoclays were used: a commercially available organoclay, Cloisite 10A (C10A), and a laboratory-prepared organoclay having a reactant group, vinylclay (ODVC). The X-ray diffraction and transmission electron microscopy experiments revealed that the HIPS/ODVC nanocomposite achieved an exfoliated structure, whereas the HIPS/C10A nanocomposite achieved an intercalated structure. In the small-amplitude oscillatory shear experiments, both storage modulus and complex viscosity increased with increasing organoclay. A pronounced effect of the organoclay content was observed, resulting in larger storage modulus and stronger yield behavior in the low frequency region when compared to neat HIPS. The crossover frequencies associated with the inverse of a longest relaxation time decreased as the organoclay content increased. Over a certain value of ODVC content, a change of pattern in rheological properties could be found, indicating a solid-like response with storage modulus greater than loss modulus at all frequencies.

Influence of Nanodispersed Organoclay on Rheological and Swelling Properties of Ethylene Propylene Diene Terpolymer

  • Acharya Himadri;Srivastava Suneel K.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.132-139
    • /
    • 2006
  • The dispersion of organoclay in ethylene propylene diene terpolymer (EPDM) matrix was correlated with the rheological and swelling properties of nanocomposites. X-ray diffraction pattern (XRD) and transmission electron microscopic (TEM) analysis exhibited the disordered-intercalated structure of EPDM/organoclay nanocomposite. The extent of the disordered phase increased with increasing organoclay content up to a limiting value of 3 wt% after which equilibrium tended towards intercalation. The dispersion effect of organoclay in EPDM matrix was clarified by the physicochemical properties like rheological response and swelling thermodynamics in toluene. The increase in viscoelastic properties of EPDM nanocomposite with increasing organoclay content up to 3 wt%, followed by a subsequent decrease up to 4 wt%, was correlated in terms of the disordered and ordered states of the dispersed nano-clay sheets. Swelling measurements revealed that the change in entropy of the swelling increased with the increase in disorder level but decreased with the increase in intercalation level of organoclay in the disordered-intercalated nanocomposite. The increase in solvent uptake was comparable with the free volume in EPDM matrix upon inclusion of silicate particles, whereas the inhibition in solvent uptake for higher organoclay loading was described by bridging flocculation.

The Application of Dual Function Organoclay on Remediation of Toxic Metals and Organic Compounds in Soil-Water System (양친매성 유기점토를 이용한 중금속과 유기 오염물질 동시제거 기술)

  • Ok, Yong-Sik;Lim, Soo-Kil;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.177-184
    • /
    • 2003
  • Although clay can sorb significant amounts of inorganic contaminants from soils and wastewater, the hydration of exchangeable cations in clay minerals makes it hydrophilic at the clay mineral surfaces and interlayers. Thus, natural clays are often ineffective in complexing and stabilizing toxic organic contaminants in soils and groundwater environment. But, substituting these hydrated cations with cationic surfactant such as QAC(Quaternary ammonium Compound) can change the natural clay from hydrophilic to hydropobic. Furthermore functionalized organoclay can act as a powerful dual function sorbent for both toxic metals and organic compounds. It also can be used as landfill clay liners, slurry walls, nano-composite materials, petroleum tank farms, waste treatment, and filter systems. To use this modified clay minerals effectively, it is required to understand the fundamental chemistry of organoclay, synthetic procedures, its engineering application, bioavailability of sorbed ion-clay complex, and potential risk of organoclay. In this review, we investigate the use, application and historical background of the organoclay in remediation technology. The state-of-the-art of organoclay research is also discussed. Finally, we suggest some future implications of organoclay in environmental research.

Structure and Properties of the Organoclay Filled NR/BR Nanocomposites

  • Kim Won-Ho;Kim Sang-Kwon;Kang Jong-Hyub;Choe Young-Sun;Chang Young-Wook
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • Organoclay, was applied as a filler, in place of carbon black and silica, to a natural rubber (NR)/butadiene rubber (BR) blend. A compounding method was used to disperse and separate the layered silicates. The effect of a coupling agent on the vulcanizates was evaluated using both the silica and organoclay filled compounds. After the compounding processes were completed, the XRD diffraction peaks disappeared, but then reappeared after vulcanization. The scorch times for the organoclay-filled compounds were very short compared to those for carbon black and silica-filled compounds. The organoclay-filled compounds showed high values of tensile strength, modulus, tear energy, and elongation at the break. When ranked by viscosity, the compounds appeared in the following order: silica > silica (Si-69) > organoclay > organoclay (Si-69) > carbon black. Fractional hysteresis, tensile set, and wear rates were very consistent with the viscosity of the vulcanizates. The Si 69 coupling agent increased reversion resistance, the maximum torque values in the ODR, modulus, and wear resistance, but decreased elongation at the break, fractional hysteresis, and tension set of the vulcanizates.

Cure and Thermal Degradation Kinetics of Epoxy/Organoclay Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.204-207
    • /
    • 2012
  • Epoxy nanocomposite was synthesized through the exfoliation of organoclay in an epoxy matrix, which was composed of diglycidyl ether of bisphenol A (DGEBA), 4,4'-methylene dianiline (MDA) and malononitrile (MN). Organoclay was prepared by treating the montmorillonite with octadecyl trimethyl ammonium bromide (ODTMA). The exfoliation of the organoclay was estimated by wide angle X-ray diffraction (WAXD) analysis. In order to measure the cure rate of DGEBA/MDA (30 phr)/MN (5 phr)/organoclay (3 phr), differential scanning calorimetry (DSC) analysis was performed at various heating rates, and the data were interpreted by Kissinger equation. Thermal degradation kinetics of the epoxy nanocomposite were studied by thermogravimetric analysis (TGA), and the data were introduced to the Ozawa equation. The activation energy for cure reaction was 45.8 kJ/mol, and the activation energy for thermal degradation was 143 kJ/mol.

Thermal, Dielectric Properties Characteristics of Epoxy-nanocomposites for Organoclay of Several Types (여러종류의 Organoclay에 대한 에폭시-나노콤포지트의 열적, 유전특성에 관한 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Nanostructured materials are attracting increased interest and application. Exciting perspectives may be offered by electrical insulation. Epoxy/Organoclay nanocomposites may find new and upgraded applications in the electrical industry, replacing conventional insulation to provide improved performances in electric power apparatus, e.g, high voltage motor/generator stator winding insulation, dry mold transformer, etc. In the paper work, the electrical and thermal properties of epoxy/organoclay nanocomposites materials were studied. The electrical insulation characteristics were analyzed through the permittivity characteristics. by analyzing the permittivity spectra, it was found that dielectric constant becomes smaller with increase frequency and becomes larger with increase temperature. This indicates restriction of molecular motion and strong bonds at the epoxy/organoclay nanocomposites. The morphology of nanocomposites obtained was examined using TEM and X-ray diffraction. It has been shown that the presence of polar groups leads to an increased gallery distance and partial exfoliation. Nevertheless, full exfoliation of clay platelets has not been achieved.

Effect of Organoclay and Blends on the Abrasion Resistance and Mechanical Properties of Poly(styrene-block-butadiene-block-styrene)

  • Kim, Ji-Hoo;Kim, Gue-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.687-694
    • /
    • 2013
  • To investigate organoclay, high styrene resin masterbatch (HSR), high impact polystyrene (HIPS), and polystyrene (PS) as reinforcing materials for the improvement of the abrasion resistance of poly(styrene-block-butadiene-block-styrene) (SBS), SBS/organoclay nanocomposites, SBS/HSR, SBS/HIPS, and SBS/PS blends were prepared. The effect of organoclay and blends on the abrasion resistance and mechanical properties of SBS was investigated. Even though intercalations of organoclay are observed for SBS/Cloisite 20A nanocomposites and not for SBS/Cloisite 30B composites, the abrasion resistance of SBS/Cloisite 20A nanocomposites is worse than that of SBS/Cloisite 30B composites. When SBS was blended with HSR, HIPS and PS, the abrasion resistance of the blends increases with increasing of HSR, HIPS and PS content from 0 to 20 wt%.

Structural and Dielectric Properties of Epoxy-Organoclay Nanocomposites using Power Ultrasonic Dispersion (초음파 분산을 이용한 Epoxy-Organoclay 나노콤포지트 구조적 그리고 유전특성에 관한 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1572-1578
    • /
    • 2008
  • The effect of the organoclay_10A nanoparticles on the DSC and Structural and Dielectrics Properties(1Hz-1MHz) for epoxy/Organoclay_10A Nanocomposites has been studied. Dielectric properties of epoxy-Organoclay nanocomposites were investigated at 1, 3, 5, 7, 9 filler concentration by weight. Epoxy nanocomposites samples were prepared with good dispersion of layered silicate using power ultrasonic method in the particles. As structural analysis, the interlayer spacing have decreased with filled nanoparticles contents increase using power ultrasonic dispersion. The maximum increase interlayered spacing was observed to decease for above 5wt% clay loading. The other hand, as decrease with concentration filler of the layered silicate were increased dispersion degree of nanoparticles in the matrix. The interesting dielectric properties for epoxy based nanocomposites systems are attributed to the large volume fraction of interfacesin the bulk of the material and the ensuring interactions between the charged nanoparticle surface and the epoxy chains.

Polyurethane Nanocomposites with Organoclay (유기화 점토를 이용한 폴리우레탄 나노 복합재료)

  • 안영욱;장진해;박연흠;박종민
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.381-388
    • /
    • 2002
  • The properties of polyurethane (PU) nanocomposites with organoclay have been compared in terms of their thermo-mechanical properties, morphology, and gas permeability. Hexadecylamine-montmorillonite ($C_{16}$-MMT) was used as an organoclay to make PU hybrid films. The properties were investigated as a function of organoclay content (1-4 wt%) in the PU matrix. Transmission electron microscopy (TEM) photographs showed that most clay layers were dispersed homogeneously into the matrix polymer in nano-scale, although some particles of clay were agglomerated. We also found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films while gas permeability was reduced. Even at low organoclay content (<5 wt%), the PU nanocomposite showed much better thermo-mechanical properties, and lower gas permeability than pure PU.