DOI QR코드

DOI QR Code

The Application of Dual Function Organoclay on Remediation of Toxic Metals and Organic Compounds in Soil-Water System

양친매성 유기점토를 이용한 중금속과 유기 오염물질 동시제거 기술

  • Ok, Yong-Sik (Division of Environmental Sciences and Ecological Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Lim, Soo-Kil (Division of Environmental Sciences and Ecological Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Sciences and Ecological Engineering, College of Life and Environmental Sciences, Korea University)
  • 옥용식 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 임수길 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 김정규 (고려대학교 생명환경과학대학 환경생태공학부)
  • Published : 2003.09.30

Abstract

Although clay can sorb significant amounts of inorganic contaminants from soils and wastewater, the hydration of exchangeable cations in clay minerals makes it hydrophilic at the clay mineral surfaces and interlayers. Thus, natural clays are often ineffective in complexing and stabilizing toxic organic contaminants in soils and groundwater environment. But, substituting these hydrated cations with cationic surfactant such as QAC(Quaternary ammonium Compound) can change the natural clay from hydrophilic to hydropobic. Furthermore functionalized organoclay can act as a powerful dual function sorbent for both toxic metals and organic compounds. It also can be used as landfill clay liners, slurry walls, nano-composite materials, petroleum tank farms, waste treatment, and filter systems. To use this modified clay minerals effectively, it is required to understand the fundamental chemistry of organoclay, synthetic procedures, its engineering application, bioavailability of sorbed ion-clay complex, and potential risk of organoclay. In this review, we investigate the use, application and historical background of the organoclay in remediation technology. The state-of-the-art of organoclay research is also discussed. Finally, we suggest some future implications of organoclay in environmental research.

Keywords

References

  1. Wild, A. (1993) Soils and the environment : An introduction, Cambridge Univ. Press, USA
  2. Anderson, S. J. and Sposito, G. (1991) Cesium-adsorption method for measuring accessible structural surface charge, Soil Sci. Soc. Am. J. 55, 1569-1576 https://doi.org/10.2136/sssaj1991.03615995005500060011x
  3. Lewis-Russ, A (1991) Measurement of surface charge of inorganic geologic materials: techniques and their consequences, Adv. Agron. 46, 199-243 https://doi.org/10.1016/S0065-2113(08)60581-7
  4. Ok, Y. S. (1999) Surface charge development by clay, organic matter, and oxide and evaluation of the hybrid model, MS Thesis, Korea University, Seoul, Korea
  5. Yoo, J. Y., Choi, J. Y. and Park, J. W. (2001) Adsorption of cadmium and lead on organobentonite, Journal of KoSSGE. 6(3), 21-29
  6. Ok, Y. S., Lim, S. K. and Kim J. G. (2002) Electrochemical properties of soils - principles and applications, Life Sci. and Natural Res. Res. 10, 69-84
  7. Boyd, S. A., Lee, J. F. and Mortland, M. M. (1988) Attenuating organic contaminant mobility by soil modification, Nature 333, 345-347 https://doi.org/10.1038/333345a0
  8. Sheng, G., Xu, S. and Boyd, S. A (1999) A dual function organoclay for lead and chlorobenzene, Soil Sci. Soc. Am. J. 63, 73-78 https://doi.org/10.2136/sssaj1999.03615995006300010012x
  9. Xu, S., and Boyd, S. A. (1995) Cationic surfactant adsorption by swelling and nonswelling layer silicate, Langmuir 11, 2508-2514 https://doi.org/10.1021/la00007a033
  10. Xu, S., Sheng, G. and Boyd, S. A. (1997) Use of organoclays in pollution abatement, Adv. Agron. 59, 25-62 https://doi.org/10.1016/S0065-2113(08)60052-8
  11. Ok, Y. S., Choi, Y. S., Lee, S. E., Lim, S. K, Chung, N. H. and Kim, J. G. (2001) Effects of Soil component and index ion on the surface charge characteristics of some Korean arable soils, Korean J. Soil Sci. Fert. 34(4), 237 -244
  12. Moon, H. S. (1996) Clay mineralogy. Mineum Press, Seoul, Korea
  13. Lee, S. Y. (2002) Clay-cationic organic complexes and their nanostructural characteristics., Ph.D. Dissertation, Seoul National University, Seoul, Korea
  14. Ok, Y. S. (2003) Empirical and mechanistic approach to adsorption and bioavailability of cadmium in soils and plants: Implications in phytoremediation. Ph.D. Dissertation Korea University, Seoul, Korea
  15. Koh, S. M. and Je, E. J. (2001) Theory and application of organoclay, J. Miner. Soc. Korea (Mneral & Industry) 14(1), 48-61
  16. Kim, E. I., Choi, S. J., Jeon, Y. W. and Song E. J. (1996) Removal of hazardous organic contaminants by organo-clay adsorbent, Theories and Applcation of Chem. Eng. 2, 2047
  17. Lim, S. K, Cheng, C. Y., Ok, Y. S. and Kim J. G. (2002) Competitive adsorption of Cd and Cu on surface of humic acid extracted from peat, Korean J. Soil Sci. Fert. 35(6), 344-351
  18. Chung, C. Y., Ok, Y. S., Kim, J. G. and Lim, S. K. (1999) Effect of electrolyte concentration on charge development and cadmium adsorption on humic surface, Annual Proc. of Korean Soc. of Environ. Agri. 1, 189-192
  19. Lee, J. F., Mortland, M. M., Chiou, C. T. and Boyd, S. A. (1989) Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite, J. Chem. Soc. Faraday Trans. I 85, 2953-2962 https://doi.org/10.1039/f19898502953
  20. Boyd, S. A., Mortland, M. M., and Chiou (1988) Sorption characteristics of organic compounds on hexadecylmethlammoniumsmectite, Soil Sci. Soc. Am. J. 52, 652-657 https://doi.org/10.2136/sssaj1988.03615995005200030010x
  21. Boyd, S. A., Jaynes, W. F., and Ross, B. S. (1991) Immobilization of organic contaminants by organoclays: Apllication to soil restoration and hazadous waste contaminants. In 'Organic substances and sediments in water,' (R. A. Baker, Ed), Lewis, Chesea, Mt, 1, 181-200
  22. Lee, J. F., Crum J. and Boyd, S. A. (1989) Enhanced retention of organic contaminants by soils exchanged with organic cations, Environ. Sci. Technol. 23, 1365-1372 https://doi.org/10.1021/es00069a006
  23. Sheng, G., Xu, S. and Boyd, S. A. (1996) Mechanism(s) controlling sorption of neutral organic contaminants by surfactant derived and natural organic matter, Environ. Sci. Technol. 30, 1553-1557 https://doi.org/10.1021/es9505208
  24. Sheng, G., Xu, S. and Boyd, S. A. (1996) Cosorption of organic contaminants from water by hexadecyltrimethylammonium-exchanged chys, Water Res. 30, 1483-1489 https://doi.org/10.1016/0043-1354(95)00303-7
  25. Brahimi, B., Labbe, P. and Reverdy, G. (1992) Study of the adsorption of cationic surfactant on aqueous laponite clay suspensions and laponite clay modified electrades, Langmuir 8, 1908-1918 https://doi.org/10.1021/la00044a006
  26. Kalyanasundaram, K and Thomas, J. K. (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescene and their application in studies of miceller system, J. Am. Chem. Soc. 99, 2039-2044 https://doi.org/10.1021/ja00449a004
  27. Rosen M. J. (1987) Surfactant and interfacial phenomena. Wiley, New York
  28. Capovilla, L., labbe, P. and Reverdy, G (1991) Formation of cationic anionic mixed surfactant bilayer on laponite clay suspensions, Langmuir 7, 1251-1264
  29. Mortland, M. M., Shaobai, S. and Boyd, S. A. (1986) Clay-organic complexes as adsorbents for phenol and chlorophenols, Clays Clay Miner. 34, 581-585 https://doi.org/10.1346/CCMN.1986.0340512
  30. Wolfe, T. A., Demirel, T. and Baumann, E. R. (1985) Interaction of aliphatic amines with montmorillonite to enhance adsorptio of organic pollutants, Clays Clay Miner. 33, 301-311 https://doi.org/10.1346/CCMN.1985.0330405
  31. Zhang Z. Z. and Sparks, D. L. (1993) Kinetic of phenol and aniline adsorption and desorption on an organo-clay, Soil Sci. Soc. Am J. 57, 340-345 https://doi.org/10.2136/sssaj1993.03615995005700020009x
  32. Laird, D. A. (1997) Bonding between polyacrylamide and day mineral surfaces, Soil Sci. 162, 826-832 https://doi.org/10.1097/00010694-199711000-00006
  33. Anderson M. A., Trouw, F. R. and Tam, C. N. (1999) Properties of water in calcium and hexadecyltrimethylammonium exchanged bentonite, Clays Clay Miner. 47, 28-35 https://doi.org/10.1346/CCMN.1999.0470103
  34. Lee, J., Mortland, M. M., Chiou, C. T., Kile, D. E. and Boyd, S. A. (1990) Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites, Clays Clay Miner. 38, 113-120 https://doi.org/10.1346/CCMN.1990.0380201
  35. Jaynes, W. F. and Vance, G. F. (1996) BTEX sorption by organo-clays: cosorption enhancement and equivalence of interlayer complexes, Soil Sci. Soc. Am. J. 60, 1742-1749 https://doi.org/10.2136/sssaj1996.03615995006000060019x
  36. Lawrence, M. A. M., Kukkadapu, R. K. and Boyd, S. A. (1998) Adsorption of phenol and chlorinated phenols from aqueous soltion by tetradecylammonium- and tetramethylphosphonium-exchanged montmorillonite, Appl. Clay Sci. 13, 13-20 https://doi.org/10.1016/S0169-1317(98)00009-X
  37. Haggerty, G. M. and Bowman (1994) Sorption of chromate and other inorganic anions by organo-zeolite, Environ. Sci. Technol. 28, 452-458 https://doi.org/10.1021/es00052a017
  38. Montgomery, D. M., Sollars, C. J., Sheriff, T. S. and Perry, R. (1988) Organophilic clays for the successful stabilization/solidfication of problematic industrial wastes, Environ. Technol. Lett. 9, 1403-1412 https://doi.org/10.1080/09593338809384707
  39. Dultz, S. and Bors, J. (2000) Organophilic bentonites as adsorbents for radionuclides (II. Chemical and mineralogical properties of HDPy-montmorillonite), Appl. Clay Sci. 16, 15-29 https://doi.org/10.1016/S0169-1317(99)00042-3
  40. Bors, J., Dultz, S. and Riebe, B. (2000) Organophilic bentonites as adsorbents for radionuclides (I. Adsorption of ionic fission products), Appl. Clay. Sci. 16, 1-13 https://doi.org/10.1016/S0169-1317(99)00041-1
  41. An, Y. U., Chang, J. H., Park, Y. H. and Park, J. M. (2002) Polyurethane Nanocomposites with organoclay, Polymer (Korea) 26(3), 381-388
  42. Seo, B. S. and Chang, J. H. (2001) Synthesis and characterization of organo-clay based thermotropic liquid crystalline polyester nanocomposites, Polymer (Korea) 25(6), 876-883

Cited by

  1. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  2. Capacity of Cr(VI) reduction in an aqueous solution using different sources of zerovalent irons vol.23, pp.6, 2006, https://doi.org/10.1007/s11814-006-0011-5