DOI QR코드

DOI QR Code

Parameters on Physiological Responses of Soybean (Glycine max Merr.) to Salinity

염분에 대한 콩의 생리학적 반응지표 연구

  • 천상욱 (동신대학교 생물자원산업화지원센터) ;
  • 박종환 (동신대학교 그린2000)
  • Published : 2003.09.30

Abstract

The mechanism imparting salt tolerance to crop plants remains still unsolved, although soybean has been classified as a susceptible plant to NaCl. To determine optimum parameters on physiological responses for improving sensitivity of salinity in breeding program, soybean (Glycine max Merr., cv. "Gwan-gan") plants were grown in a greenhouse, treated 20 days after emergence for 7 days with NaCl at 0, 30, 60, and 90mM, corresponding to electric conductivity of 1.2, 4.4, 7.3, and 10.4 dS/m, respectively, and assessed 30 days after treatment. Chlorophyll contents were significantly decreased by NaCl ($0.4{\sim}1.0\;mg/g$) compared to control (1.2 mg/g). Photosynthesis rate by NaCl treatment at $0{\sim}90\;mM$ at flowering stage was ranged from 5.0 (control) to $9.6\;{\mu}mol/m^2/s$. Oxygen for respiration was consumed from 5.4 to $9.7\;{\mu}mol/m^2/s$ so that the ratio of $O_2$ (evolution:consumption) was increased with the increase of NaCl, indicating that $O_2$ consumption seems to go beyond $O_2$ evolution. Water potential of leaf at vegetative stage II was ranged from -0.6 to -1.8 MPa and the highest level was observed at mid-day. Water potential by salt stress was decreased with range of $-2.1{\sim}-2.7MPa$ compared to control. Transpiration was decreased from 17% to 20% by NaCl stress. Water vapor diffusing resistance of intercellular air space was affected significantly, increasing up to $16{\sim}24%$ compared to control by NaCl treatment. Salt-treated soybean tended to accumulate $Na^+$, specially in root, with reduced absorption of N, P, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ contents. Free proline content of soybean leaf as affected by different NaCl concentrations was increased 4.2 times ($184{\sim}434\;{\mu}g/g$) more than control. NaCl also increased activities of nitrate reductase and peroxidase by $28{\sim}161%$ and $3{\sim}22%$, respectively. The results show that physiological characteristics of soybean plants during assay were useful as the best parameters of salt stress or salt tolerance test to improve sensitivity in screening and breeding program among cultivars or germplasms.

본 연구는 "광안콩"의 20일 묘를 공시하여 $0{\sim}90\;mM$의 염분조건에서 콩의 생리학적 피해정도를 산정하고 내염성 품종선발과 육종계획에 요구되는 기초자료로 활용하고자 수행되었다. 엽록소의 함량은 정상적인 관수를 실시한 대조구에 비해 염분 처리에서 $15{\sim}60%$ 감소하였고 농도증가에 따라 감소정도가 크게 나타났다. 염분 처리에 따른 광합성과 호흡량은 각각 $28{\sim}48%$$16{\sim}34%$ 감소하였고 $O_2$ 생산 비율보다 $O_2$ 소모 비율이 높게 나타났다. 수분 potential은 정상 잎(-1.5 MPa)에 비해 염분처리에서는 농도별로 -2.13에서 -2.69 MPa로 직선적으로 감소하였다. 개화기 염처리에서 대조구 $13.3\;{\mu}g$의 약 $17{\sim}22%$로 감소한 $11.8{\sim}10.4\;{\mu}g$이었으며 증산저항은 $1.08{\sim}1.70\;S/m$로 증가하는 경향이었다. 콩 잎의 수분증산 저항에 미치는 염분의 영향은 잎 내부의 기층저항이 가장 심한 차이를 보였고 무처리에서 45.9 S/m인 반면 염분처리에서는 $53.5{\sim}56.6\;S/m$로 농도증가에 따라 증가하였으며 기공저항과 잎 경계면의 저항은 큰 차이를 보이지 않았다. 대부분의 무기물 함량은 뿌리보다 앞에서 축적량이 더 많게 나타났으나 $Na^+$만이 뿌리에 더 많이 축적되었고 N, P, $K^+$, $Ca^{2+}$$Mg^{2+}$는 무처리에 비해 오히려 그 축적량이 감소하였다. 염분처리에 따른 콩 잎의 유리 proline은 무처리($10.5\;{\mu}g$) 대비 $1.8{\sim}4.2$배 ($184{\sim}434\;{\mu}g$)로 염 농도가 증가함에 따라 축적량이 증가하는 경향이었다. Nitrate reductase의 활성은 염 농도가 증가함에 따라 증가하였으나 농도가 90 mM 염분 처리에서의 증가폭은 다소 둔화되는 경향이었다. 한편 peroxidase 활성 역시 염분농도가 증가함에 다라 증가하는 것으로 나타났다.

Keywords

References

  1. 임형빈, 황종서 (1970) 간척지에서 수도 및 기타작물의 내염성에 관한 연구, 한국식물학회지8, 47-68
  2. Akira, N., Masso, M and Krira, I. (1981) Relationships between salt tolerance of green solybean and calcium sulfate applications in sand culture, Jpn. Soc. Hot Sci. 50, 326-331 https://doi.org/10.2503/jjshs.50.326
  3. Bernstein, L. and Hayward, H. E. (1958) Physiology of salt tolerance, Annu. Rev. Plant Physiol. 9, 25-46 https://doi.org/10.1146/annurev.pp.09.060158.000325
  4. Johnson, R. R, Frey, N. N. and Moss, D. N. (1974) Effect of water stress on photosynthesis and transpiration of flag leaves and spikes of barley and wheat, Crop Sci. 14, 728-731 https://doi.org/10.2135/cropsci1974.0011183X001400050035x
  5. Hsiao, T. C. (1973) Plant response to water stress. Annu. Rev. Plant Physiol, 24, 519-570 https://doi.org/10.1146/annurev.pp.24.060173.002511
  6. Dubbe, D. R., Farquher, G. D. and Raschke, K (1978) Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata, Plant Physiol. 62, 413-417 https://doi.org/10.1104/pp.62.3.413
  7. Radin, J. W. (1981) Water relation of cotton plants under nitrogen deficiency. III. Stomatal conductance, photosynthesis and abscisic accumulation during drought, Plant Physiol. 67, 115-119 https://doi.org/10.1104/pp.67.1.115
  8. Dettori, L. (1985) Leaf water potential, stomatal resistance and transpiration response to different watering in almond, peach, and Pixy plum, Acta Hort. 171, 112-117
  9. Cramer, G. R., Lauchli, A. and Polito, V. P. (1985) Displacement of $Ca^{2+}$ by $Na^+$ from the plasmalemma of root cells, Plant Physiol. 29, 207-211
  10. Lynch, J. and Lauchli, A. (1984) Potassium transport in salt stressed barley roots, Planta 161, 295-301 https://doi.org/10.1007/BF00398718
  11. Gouia, H., Ghorbal, M. H. and Touraine, B. (1994) Effects of NaCl on flows of N and mineral ions and on $NO_3^-$ reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton, Plant Physiol. 105, 1409-1418 https://doi.org/10.1104/pp.105.4.1409
  12. Ericson, M. C. and Alfinito, S. H. (1984) Proteins produced during salt stress in tobacco cell culture, Plant Physiol. 74, 506-509 https://doi.org/10.1104/pp.74.3.506
  13. Chandler, S. F. and Thorer, T. A. (1987) Proline accumulation and sodium sulfate tolerance in callus cultures of Brassica napus L. cv. Wester, Plant Cell Reports 6, 176-179 https://doi.org/10.1007/BF00268471
  14. Klein, A. and Itai, C. (1989) Is proline involved in stomata regulation of Commelina conmunis plants recovering from salinity stress?, Plant Physiol. 75, 399-404 https://doi.org/10.1111/j.1399-3054.1989.tb04645.x
  15. Misra, N. and Dwiverdi, U. N. (1990) Nitrogen assimilation in germinating Phaseolus aureus seeds under saline stress, J. Plant Physiol. 135, 719-724 https://doi.org/10.1016/S0176-1617(11)80886-2
  16. Bourgeais-Chaillou, P., Perez-Alfocea, F. and Guerrier, G. (1992) Comparative effects on N-source on growth and physiological responses of soybean exposed to NaCl -stress, J. Exp. Bot. 43, 1225-1233 https://doi.org/10.1093/jxb/43.9.1225
  17. Epstein, E., Norlyn, J. D., Rush, D. W., Kingsbury, R. W., Kelly, D. B., Cunningham, G. A. and Wrona, A. F. (1980) Saline culture of crops: A genetic approach, Science 210, 399-404 https://doi.org/10.1126/science.210.4468.399
  18. Singh, P., Kanemasu, E. T. and Singh, P. (1983) Yield and water relation of pearl millet genotypes under irrigated and non-irrigated conditions, Agron. J. 7, 886-890
  19. Tanksley, S. D., Young, N. D., Paterson, A. H. and Bonierbale, M. W. (1989) RFLP mapping in plant breeding : new tools for an old science, Biotech. 7, 257-264 https://doi.org/10.1038/nbt0389-257
  20. Hageman, R. H. and Reed, V. (1980) Nitrate reductase from higher plants, Methods in Enzymology I. 69, 270-280 https://doi.org/10.1016/S0076-6879(80)69026-0
  21. 농촌진흥청 (2000) 토양 및 식물체 분석법 - 물리, 화학, 미생물. 삼미기획, 수원, 한국, p.1-202
  22. Bates, L. S., Waldren, R. P. and Teare, I. D. (1973) Rapid determination of free proline for water-stress studies, Plant Soil 39, 205-207 https://doi.org/10.1007/BF00018060
  23. Longstreth, D. J. and Nobel, P. S. (1979) Salinity effects on leaf anatomy(Consequences for photosynthesis), Plant Physiol. 63, 700-703 https://doi.org/10.1104/pp.63.4.700
  24. Bongi, G. and Loreto, F. (1989) Gas-exchange properties of salt-stressed olive(Olea europea L.) leaves, Plant Physiol. 90, 1408-1416 https://doi.org/10.1104/pp.90.4.1408
  25. Greenway, H. and Munns, H. R. (1980) Mechanisms of salt tolerance in nonhalophyte, Annu. Rev. Plant Physiol. 31, 149-196 https://doi.org/10.1146/annurev.pp.31.060180.001053
  26. Pessarakli, M,. Huber, J. H. and Tucker, T. C. (1981) Protein synthesis is green beans under salt stress with two nitrogen sources, J. Plant Nutr. 12, 1361-1377 https://doi.org/10.1080/01904168909364042
  27. Pessarakli, M. (1991) Dry matter yield, nitrogen-15 absorption, and water uptake by green bean under sodium chloride stress, Crop Sci. 31, 1633-1640 https://doi.org/10.2135/cropsci1991.0011183X003100060051x
  28. Chavan, P. D. and Karadge, B. A. (1986) Growth, mineral nutrition, organic constituents and rate of photosynthesis in Sesbania grandifiora L. grown under saline conditions, Plant Soil 93, 395-404 https://doi.org/10.1007/BF02374290
  29. Storey, R. and Wyn Jones, R. G. (1977) Quaternary ammonium compounds in plants in relation to salt resistance, Phytochem. 16, 447-453 https://doi.org/10.1016/S0031-9422(00)94326-7
  30. Wyn Jones, R. G. and Storey, R. (1978) Salt stress and comparative physiology in the Graminae. 2. Glycine, betaine and proline accumulation in two salt and water stressed barley cultivars, Aust. J. Plant Physiol. 5, 817-829 https://doi.org/10.1071/PP9780817
  31. Weimberg, R, Lerner, H. R. and Poljakoff-Mayber, A. (1982) A relationship between potassium and proline accumulation in salt-stressed Sorghum bicolor, Physiol. Plant. 55, 5-10 https://doi.org/10.1111/j.1399-3054.1982.tb00276.x
  32. Gossett, D. R., Millhollon, E. P. and Lucas, M. C. (1994) Antioxidant response to NaCl stress in salt tolerant and salt-sensitive cultivars of cotton, Crop Sci. 34, 706-714 https://doi.org/10.2135/cropsci1994.0011183X003400030020x
  33. Harper, D. B. and Harvey, B. M. R. (1978) Mechanisms of paraquat tolerance in perennial ryegrass. II. Role of superoxide dismutase, catalase, and peroxidase, Plant Cell Environ. 1, 211-215 https://doi.org/10.1111/j.1365-3040.1978.tb00763.x
  34. Chang, H., Siegel, B. Z. and Siegel, S. M. (1984) Salinity induced changes isoperoxidase in taro, Colocasia esculenta, Phytochem. 23, 233-235 https://doi.org/10.1016/S0031-9422(00)80308-8

Cited by

  1. Effect of Calcium Chloride Concentration on Roadside Ground Cover Plant Growth vol.41, pp.4, 2013, https://doi.org/10.9715/KILA.2013.41.4.017
  2. Physiological Response of Four Corn Cultivars to Soil Salinity vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.293
  3. Influence of Soil Salinity on the Growth Response and Inorganic Nutrient Content of a Millet Cultivar vol.61, pp.2, 2016, https://doi.org/10.7740/kjcs.2016.61.2.113
  4. Effects of NaCl on Growth and Physiological Characteristics of Synurus deltoides(Aiton) Nakai vol.52, pp.2, 2018, https://doi.org/10.14397/jals.2018.52.2.55