• Title/Summary/Keyword: organic thin-film transistors

Search Result 329, Processing Time 0.026 seconds

Study on the Reliability of an OLED Pixel Circuit Using Transient Simulation (과도상태 시뮬레이션을 사용한 OLED 픽셀 회로의 신뢰성 분석 방안 연구)

  • Jung, Taeho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.141-145
    • /
    • 2021
  • The brightness of the Organic Light Emitting Diode (OLED) display is controlled by thin-film transistors (TFTs). Regardless of the materials and the structures of TFTs, an OLED suffers from the instable threshold voltage (Vth) of a TFT during operation. When designing an OLED pixel with circuit simulation tool such as SPICE, a designer needs to take Vth shift into account to improve the reliability of the circuit and various compensation methods have been proposed. In this paper, the effect of the compensation circuits from two typical OLED pixel circuits proposed in the literature are studied by the transient simulation with a SPICE tool in which the stretched-exponential time dependent Vth shift function is implemented. The simulation results show that the compensation circuits improve the reliability at the beginning of each frame, but Vth shifts from all TFTs in a pixel need to be considered to improve long-time reliability.

Properties of Organic PMMA Gate Insulator Film at Various Concentration and Film Thickness (PMMA 유기 게이트 절연막의 농도와 두께에 따른 특성)

  • Yoo, Byung-Chul;Gong, Su-Cheol;Shin, Ik-Sub;Shin, Sang-Bea;Lee, Hak-Min;Park, Hyung-Ho;Jeon, Hyung-Tag;Chang, Young-Chul;Chang, Ho-Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.69-73
    • /
    • 2007
  • The MIM(metal-insulator-metal) capacitors with the Al/PMMA/ITO/Glass structures were manufactured according to various PMMA concentration of 1, 2, 4, 6, 8 wt%. The lowest leakage current and the largest capacitance were found to be 2.3 pA and 1.2 nF, respectively, for the device with 2 wt% PMMA concentration. The measured capacitance of the devices was almost same values with the calculated one. The optimum film thickness was obtained at the value of 48 nm, showing that the capacitance and leakage current were 1.92 nF, 0.3 pA at 2 wt%, respectively. From this experiment, the PMMA gate insulator films can be applicable to the organic thin film transistors.

  • PDF

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

IGZO TFT Stability Improvement Based on Various Passivation Materials (다양한 Passivation 물질에 따른 IGZO TFT Stability 개선 방법)

  • Kim, Jaemin;Park, Jinsu;Yoon, Geonju;Cho, Jaehyun;Bae, Sangwoo;Kim, Jinseok;Kwon, Keewon;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.6-9
    • /
    • 2020
  • Thin film transistors (TFTs) with large-area, high mobility, and high reliability are important factors for next-generation displays. In particular, thin transistors based on IGZO oxide semiconductors are being actively researched for this application. In this study, several methods for improving the reliability of a-IGZO TFTs by applying various materials on a passivation layer are investigated. In the literature, inorganic SiO2, TiO2, Al2O3, ZTSO, and organic CYTOP have been used for passivation. In the case of Al2O3, excellent stability is exhibited compared to the non-passivation TFT under the conditions of negative bias illumination stress (NBIS) for 3 wavelengths (R, G, B). When CYTOP passivation, SiO2 passivation, and non-passivation devices were compared under the same positive bias temperature stress (PBTS), the Vth shifts were 2.8 V, 3.3 V, and 4.5 V, respectively. The Vth shifts of TiO2 passivation and non-passivation devices under the same NBTS were -2.2 V and -3.8 V, respectively. It is expected that the presented results will form the basis for further research to improve the reliability of a-IGZO TFT.

Synthesis of Novel Asymmetric Oligomers Based on Benzothiophene and OTFT Characteristics (벤조사이오펜을 기초로 한 새로운 비대칭형 올리고머의 합성과 OTFT 특성)

  • Lee, Dong-Hee;Park, Jong-Won;Chung, Dae-Sung;Park, Chan;Kim, Yun-Hi;Kwon, Soon-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.129-129
    • /
    • 2010
  • The conjugated oligomers with rigid and fused-ring structures are of interest for the solution-processable organic thin film transistors (OTFTs) due to their well defined structure and high purity. In this study, alkyl substituted benzothiophene based oligomers were synthesized by a novel route, the key point of which is the acid-induced intermolecular cyclization reaction of aromatic methyl sulfoxides, and were confirmed by $^1H$-NMR and FT-IR studies. The obtained oligomers showed the good solubility in common organic solvents such as hexane, chloroform, and dimethylchloride at room-temperature, which is due to the introduced alkyl chain. The physical and optical properties of the oligomers were studied using differential scanning scalorimetry (DSC), cyclic-voltammetry (CV), UV-visible and PL spectra studies. Solution processed OTFT device based on synthesized oligomers show a high hole mobility of up to $0.01\;cm^2V^{-1}s^{-1}$, $I_{on}/I_{off}$ of $10^5$ and threshold voltage of -14V.

  • PDF

A STUDY ON THE ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS WITH SURFACE-TREATED GATE DIELECTRIC LAYER (표면 처리한 $SiO_2$를 게이트 절연막으로 하는 박막 트랜지스터의 특성 연구)

  • Lee, Jae-Hyuk;Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun;Kim, Eu-Gene
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.455-457
    • /
    • 2000
  • In this work the electrical characteristics of organic TFTs with the semiconductor-insulator interfaces, where the gate dielectrics were treated by the two methods which are the deposition of Octadecyltrichlorosilane (OTS) on the insulator and rubbing the insulator surface. Pentacene is used as an active semiconducting layer. The semiconductor layer of pentacene was thermally evaporated in vacuum at a pressure of about $2{\times}10^{-7}$ Torr and at a deposition rate of $0.3{\AA}/sec$. Aluminum and gold were used for the gate and source/drain electrodes. OTS is used as a self-alignment layer between $SiO_2$ and pentacene. The gate dielectric surface was rubbed before pentacene is deposited on the insulator. In order to confirm the changes of the surface morphology the atomic force microscopy (AFM) was utilized. The characteristics of the fabricated TFTs are measured to clarify the effects of the surface treatment.

  • PDF

Nonvolatile Ferroelectric P(VDF-TrFE) Memory Transistors Based on Inkjet-Printed Organic Semiconductor

  • Jung, Soon-Won;Na, Bock Soon;Baeg, Kang-Jun;Kim, Minseok;Yoon, Sung-Min;Kim, Juhwan;Kim, Dong-Yu;You, In-Kyu
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.734-737
    • /
    • 2013
  • Nonvolatile ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) memory based on an organic thin-film transistor with inkjet-printed dodecyl-substituted thienylenevinylene-thiophene copolymer (PC12TV12T) as the active layer is developed. The memory window is 4.5 V with a gate voltage sweep of -12.5 V to 12.5 V. The field effect mobility, on/off ratio, and gate leakage current are 0.1 $cm^2/Vs$, $10^5$, and $10^{-10}$ A, respectively. Although the retention behaviors should be improved and optimized, the obtained characteristics are very promising for future flexible electronics.

Investigation of Low-Temperature Processed Amorphous ZnO TFTs Using a Sol-Gel Method

  • Chae, Seong Won;Yun, Ho Jin;Yang, Seung Dong;Jeong, Jun Kyo;Park, Jung Hyun;Kim, Yu Jeong;Kim, Hyo Jin;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.155-158
    • /
    • 2017
  • In this paper, ZnO Thin Film Transistors (TFTs) were fabricated by a sol-gel method using a low-temperature process, and their physical and electrical characteristics were analyzed. To lower the process temperature to $200^{\circ}C$, we used a zinc nitrate hydrate ($Zn(NO_3)_2{\cdot}xH_2O$) precursor. Thermo Gravimetric Analyzer (TGA) analysis showed that the zinc nitrate hydrate precursor solution had 1.5% residual organics, much less than the 6.5% of zinc acetate dihydrate at $200^{\circ}C$. In the sol-gel method, organic materials in the precursor disrupt formation of a high-quality film, and high-temperature annealing is needed to remove the organic residuals, which implies that, by using zinc nitrate hydrate, ZnO devices can be fabricated at a much lower temperature. Using an X-Ray Diffractometer (XRD) and an X-ray Photoelectron Spectrometer (XPS), $200^{\circ}C$ annealed ZnO film with zinc nitrate hydrate (ZnO (N)) was found to have an amorphous phase and much more oxygen vacancy ($V_o$) than Zn-O bonds. Despite no crystallinity, the ZnO (N) had conductance comparable to that of ZnO with zinc acetate dihydrate (ZnO (A)) annealed at $500^{\circ}C$ as in TFTs. These results show that sol-gel could be made a potent process for low-cost and flexible device applications by optimizing the precursors.

Investigation of Top-Contact Organic Field Effect Transistors by the Treatment Using the VDP Process on Dielectric

  • Kim, Young-Kwan;Hyung, Gun-Woo;Park, Il-Houng;Seo, Ji-Hoon;Seo, Ji-Hyun;Kim, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.54-60
    • /
    • 2007
  • 이 논문에서는 게이트 절연막 위에 vapor deposition polymerization(VDP)방법을 사용하여 성막한 유기 점착층을 진공 열증착하여 유기 박막 트랜지스터(OTFTs)소자를 제작할 수 있음을 증명하였다. 우리가 제작한 Staggered-inverted top-contact 구조를 사용한 유기 박막 트랜지스터는 전기적 output 특성이 포화 영역안에서는 포화곡선을, triode 영역에서는 비선형적인 subthreshold를 확실히 볼 수 있음을 발견했다. $0.2{\mu}m$ 두께를 가진 게이트 절연막위에 유기 점착층을 사용한 OTFTs의 장 효과 정공의 이동도와 문턱전압, 그리고 절멸비는 각각, 약 0.4cm2/Vs, -0.8V, 106 이 측정되었다. 게이트 절연막의 점착층으로써 폴리이미드의 성막을 위해, 스핀코팅 방법 대신 VDP 방법을 도입하였다. 폴리이미드 고분자막은 2,2bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride(6FDA)와 4,4'-oxydianiline(ODA)을 고진공에서 동시에 열 증착 시킨 후, 그리고 $150^{\circ}C$에서 1시간, 다시 $200^{\circ}C$에서 1시간 열처리하여 고분자화된 막을 형성하였다. 그리고 점착층이 OTFTs의 전기적 특성에 주는 영향을 설명하기 위해 비교 연구하였다.

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF