References
- B.H. Park et al., "Lanthanum-Substituted Bismuth Titanate for Use in Non-volatile Memories," Nature, vol. 401, no. 6754, 1999, pp. 6820-684.
-
K.-H. Kim et al., "Ferroelectric DRAM(FEDRAM) FET with Metal/
$SrBi_2Ta_2O_9$ /SiN/Si Gate Structure," IEEE Electron Dev. Lett., vol. 23, no. 2, 2002, pp. 82-84. https://doi.org/10.1109/55.981313 - I.A. Ukaegbu et al., "A Study of Ferroelectric Properties of the Oscillator Model of PZT-22," ETRI J, vol. 33, no. 1, Feb. 2011, pp. 132-135. https://doi.org/10.4218/etrij.11.0210.0147
-
S.-M. Yoon et al., "Fully Transparent Non-volatile Memory Thin-Film Transistors Using an Organic Ferroelectric and Oxide Semiconductor Below
$200^{\circ}C$ ," Adv. Funct. Mater., vol. 20, 2010, pp. 921-926. https://doi.org/10.1002/adfm.200902095 - S.-W. Jung et al., "Top-Gate Ferroelectric Thin-Film-Transistors with P(VDF-TrFE) Copolymer," Current Appl. Phys., vol. 10, 2010, pp. e58-e60. https://doi.org/10.1016/j.cap.2009.12.014
- K.-J. Baeg et al., "Controlled Charge Transport by Polymer Blend Dielectrics in Top-Gate Organic Field-Effect Transistors for Low-Voltage-Operating Complementary Circuits," ACS Appl. Mater. Interfaces, vol. 4, 2012, pp. 6176-6184. https://doi.org/10.1021/am301793m
- S.K. Hwang et al., "Flexible Non-Volatile Ferroelectric Polymer Memory with Gate-Controlled Multilevel Operation," Adv. Mater., vol. 24, 2012, pp. 5910-5914. https://doi.org/10.1002/adma.201201831
- K.-J. Baeg et al., "Polymer Dielectrics and Orthogonal Solvents Effects for High Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors," ETRI J, vol. 33, no. 6, Dec. 2011, pp.887-896. https://doi.org/10.4218/etrij.11.0111.0321
-
J. Kim et al., "Highly Soluble Poly(thienylenevinylene) Derivatives with Charge-Carrier Mobility Exceeding
$1cm^2V^{-1}s^{-1}$ ," Chem. Mater., vol. 23, 2011, pp. 4663-4665. https://doi.org/10.1021/cm2021802 - S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., NJ: Wiley-Interscience, 2007.
Cited by
- Inkjet-printed organic thin-film transistor and antifuse capacitor for flexible one-time programmable memory applications vol.64, pp.1, 2013, https://doi.org/10.3938/jkps.64.74
- Flexible organic transistors based on a solution-sheared PVDF insulator vol.3, pp.47, 2013, https://doi.org/10.1039/c5tc02488a
- Flexible nonvolatile memory transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) fabricated on elastomer substrate vol.33, pp.5, 2013, https://doi.org/10.1116/1.4927367
- Non-volatile organic ferroelectric memory transistors fabricated using rigid polyimide islands on an elastomer substrate vol.4, pp.20, 2013, https://doi.org/10.1039/c6tc00083e
- High-frequency organic rectifiers through interface engineering vol.7, pp.4, 2013, https://doi.org/10.1557/mrc.2017.100
- pJ-Level Energy-Consuming, Low-Voltage Ferroelectric Organic Field-Effect Transistor Memories vol.10, pp.None, 2013, https://doi.org/10.1021/acs.jpclett.9b00864
- Vacuum-free fabrication of a low-voltage multi-bit memory device based on a ferroelectric polymer and photosensitive film vol.14, pp.2, 2013, https://doi.org/10.1049/mnl.2018.5414
- Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends vol.11, pp.8, 2013, https://doi.org/10.1021/acsami.8b20571
- Recent Advance of Flexible Organic Memory Device vol.1, pp.1, 2013, https://doi.org/10.22895/jse.2020.0009