DOI QR코드

DOI QR Code

IGZO TFT Stability Improvement Based on Various Passivation Materials

다양한 Passivation 물질에 따른 IGZO TFT Stability 개선 방법

  • Kim, Jaemin (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Park, Jinsu (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yoon, Geonju (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cho, Jaehyun (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Bae, Sangwoo (Technology Quality & Reliability Foundry Division, Samsung Electronics Co., LTD.) ;
  • Kim, Jinseok (Technology Quality & Reliability Foundry Division, Samsung Electronics Co., LTD.) ;
  • Kwon, Keewon (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Youn-Jung (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 김재민 (성균관대학교 전자전기컴퓨터공학과) ;
  • 박진수 (성균관대학교 전자전기컴퓨터공학과) ;
  • 윤건주 (성균관대학교 전자전기컴퓨터공학과) ;
  • 조재현 (성균관대학교 전자전기컴퓨터공학과) ;
  • 배상우 (삼성전자 Foundry 개발 QA 그룹) ;
  • 김진석 (삼성전자 Foundry 개발 QA 그룹) ;
  • 권기원 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이윤정 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이준신 (성균관대학교 전자전기컴퓨터공학과)
  • Received : 2019.09.06
  • Accepted : 2019.09.27
  • Published : 2020.01.01

Abstract

Thin film transistors (TFTs) with large-area, high mobility, and high reliability are important factors for next-generation displays. In particular, thin transistors based on IGZO oxide semiconductors are being actively researched for this application. In this study, several methods for improving the reliability of a-IGZO TFTs by applying various materials on a passivation layer are investigated. In the literature, inorganic SiO2, TiO2, Al2O3, ZTSO, and organic CYTOP have been used for passivation. In the case of Al2O3, excellent stability is exhibited compared to the non-passivation TFT under the conditions of negative bias illumination stress (NBIS) for 3 wavelengths (R, G, B). When CYTOP passivation, SiO2 passivation, and non-passivation devices were compared under the same positive bias temperature stress (PBTS), the Vth shifts were 2.8 V, 3.3 V, and 4.5 V, respectively. The Vth shifts of TiO2 passivation and non-passivation devices under the same NBTS were -2.2 V and -3.8 V, respectively. It is expected that the presented results will form the basis for further research to improve the reliability of a-IGZO TFT.

Keywords

References

  1. J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Appl. Phys Lett., 93, 093504 (2008). [DOI: https://doi.org/10.1063/1.2977865]
  2. K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett., 95, 013502 (2009). [DOI: https://doi.org/10.1063/1.3159831]
  3. C. H. Tu, W. T. Lin, C. H. Chen, M. C. Hung, J. J. Chang, M. F. Chiang, and W. I Liao, J. Soc. Inf. Disp., 42, 1151 (2011). [DOI: https://doi.org/10.1889/1.3621028]
  4. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater., 16, 639 (2004). [DOI: https://doi.org/10.1021/cm0304546]
  5. A. Moldovan, F. Feldmann. M. Zimmer, J. Rentsch, J. Benick, and M. Hermle, Sol. Energy Mater. Sol. Cells, 142, 123 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.06.048]
  6. J. R. Lloyd, Thin Solid Films, 91, 175 (1982). [DOI: https://doi.org/10.1016/0040-6090(82)90431-X]
  7. A. Olziersky, P. Baequinha, A. Vila, L. Pereira, G. Goncalves, E. Fortunato, R. Martins, and J. R. Morante, J. Appl. Phys., 108, 064505 (2010). [DOI: https://doi.org/10.1063/ 1.3477192]
  8. Y. Yang, G. Z. Hu, Y. Hao, X. H. Ma, S. Quan, L. Y. Yang, and S. G. Jiang, Chin. Phys. B, 19, 047301 (2010). [DOI: https://doi.org/10.1088/1674-1056/19/4/047301]
  9. L. Kavan, M. Gratzel, J. Rathousky, and A. Zukalb, J. Electrochem. SOC., 143, 394 (1996). [DOI: https://doi.org/10.1149/1.1836455]
  10. M. P. Walser, W. L. Kalb, T. Mathis, T. J. Brenner, and B. Batlogg, Appl. Phys. Lett., 94, 053303 (2009). [DOI:https://doi.org/10.1063/1.3077192]
  11. S. Y. Huang, T. C. Chang, M. C. Chen, T. C. Chen, F. Y. Jian, Y. C. Chen, H. C. Huang, and D. S. Gan, ESurf. Coat. Technol., 231, 117 (2013). [DOI: https://doi.org/10.1016/j.surfcoat.2011.12.047]
  12. S. H. Choi, J. H. Jang, J. J. Kim, and M. K. Han, IEEE Electron Device Lett., 33, 381 (2012). [DOI: https://doi.org/10.1109/LED.2011.2178112]
  13. Y. H. Kim, H. S Kim, J. I. Han, and S. K. Park, Appl. Phys Lett., 97, 092105 (2010). [DOI: https://doi.org/10.1063/1.3485056]
  14. J. W. Park, D. Lee, H. Kwon, and S. Yoo, IEEE Electron Device Lett., 30, 362 (2009). [DOI: https://doi.org/10.1109/LED.2009.2013647]
  15. X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, Chem. Mater., 22, 1559 (2010). [DOI: https://doi.org/10.1021/cm902929b]
  16. W. L. Kalb, T. Mathis, S. Haas, A. F. Stassen, and B. Batlogg, Appl. Phys, Lett., 90, 092104 (2007). [DOI: https://doi.org/10.1063/1.2709894]
  17. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 90, 212114 (2007). [DOI: https://doi.org/10.1063/1.2742790]
  18. H. S. Seo, J. U. Bae, D. H. Kim, Y. J. Park, C. D. Kim, I. B. Kang, I. J. Chung, J. H. Choi, and J. M. Myoung. Electrochem. Solid-State Lett., 12, H348 (2009). [DOI:https://doi.org/10.1149/1.3168522]