• 제목/요약/키워드: organic thin film transistors (TFTs)

검색결과 87건 처리시간 0.023초

저전압에서 다결정 실리콘 TFT의 불균일한 특성을 보상한 새로운 AMOLED 구동회로 (A Novel Poly-Si TFT Pixel circuit for AMOLED to Compensate Threshold Voltage Variation of TFT at Low Voltage)

  • 김나영;이문석
    • 대한전자공학회논문지SD
    • /
    • 제46권8호
    • /
    • pp.1-5
    • /
    • 2009
  • 본 논문에서는 저전압에서 다결정 실리콘(Polycrysta1line Silicon: Poly-Si) 박막 트랜지스터 (Thin Film Transistors: TFTs) 의 문턱전압(threshold voltage)의 불균일성을 보상한 새로운 AMOLEDs(Active Matrix Organic Light Diodes) 구동 회로를 제안한다, 제안한 회로는 6개의 스위칭, 1개의 드라이빙 TFT와 1개의 저장 콘덴서로 구성되어 있으며, SPICE 시뮬레이션을 통해 구동회로의 동작을 검증하였다. 시뮬레이션 결과 5V정도의 낮은 구동 전압($V_{DD}$)에서 제안한 화소 구동회로의 OLED 출력 전류는 0.8%정도의 오차를 갖는 반면 기본적인 구동회로의 경우 약20%정도의 오차를 갖는 것을 확인할 수 있었다. 본 논문에서 제안한 화소 구동회로는 OLED의 전류를 결정하는 driving TFT의 threshold voltage 변화에 따른 전류의 변화를 성공적으로 보상하였고, 안정화된 전류를 OLED를 흘려주어 기본적인 화소 회로가 가지고 있던 불균일화의 문제를 해결함을 알 수 있다.

Pixel Circuit with Threshold Voltage Compensation using a-IGZO TFT for AMOLED

  • Lee, Jae Pyo;Hwang, Jun Young;Bae, Byung Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.594-600
    • /
    • 2014
  • A threshold voltage compensation pixel circuit was developed for active-matrix organic light emitting diodes (AMOLEDs) using amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO-TFTs). Oxide TFTs are n-channel TFTs; therefore, we developed a circuit for the n-channel TFT characteristics. The proposed pixel circuit was verified and proved by circuit analysis and circuit simulations. The proposed circuit was able to compensate for the threshold voltage variations of the drive TFT in AMOLEDs. The error rate of the OLED current for a threshold voltage change of 3 V was as low as 1.5%.

Development of IGZO TFTs and Their Applications to Next-Generation Flat-Panel Displays

  • Hsieh, Hsing-Hung;Lu, Hsiung-Hsing;Ting, Hung-Che;Chuang, Ching-Sang;Chen, Chia-Yu;Lin, Yusin
    • Journal of Information Display
    • /
    • 제11권4호
    • /
    • pp.160-164
    • /
    • 2010
  • Organic light-emitting devices (OLEDs) have shown superior characteristics and are expected to dominate the nextgeneration flat-panel displays. Active-matrix organic light-emitting diode (AMOLED) displays, however, have stringent demands on the performance of the backplane. In this paper, the development of thin-film transistors (TFTs) based on indium gallium zinc oxide (IGZO) on both Gen 1 and 6 glasses, and their decent characteristics, which meet the AMOLED requirements, are shown. Further, several display prototypes (e.g., 2.4" AMOLED, 2.4" transparent AMOLED, and 32" AMLCD) using IGZO TFTs are demonstrated to confirm that they can indeed be strong candidates for the next-generation TFT technology not only of AMOLED but also of AMLCD (active-matrix liquid crystal display).

Investigation of long-term stability of pentacene thin-film transistors encapsulated with transparent $SnO_2$

  • Kim, Woo-Jin;Koo, Won-Hoe;Jo, Sung-Jin;Kim, Chang-Su;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1276-1279
    • /
    • 2005
  • The long-term stability of pentacene thin-film transistors (TFTs) encapsulated with a transparent $SnO_2$ thin-film prepared by ion beam assisted deposition (IBAD) was investigated. With a buffer layer of thermally evaporated 100 nm $SnO_2$ film deposited prior to IBAD process, our encapsulated OTFTs sustained its initial field-effect mobility up to one month and then gradually degraded showing only 37% reduction compared to 90% reduction of non-encapsulated OTFTs after 100 days in air ambient. The encapsulated OTFTs also exhibited superior on/off current ratio of over $10^5$ to that of the unprotected devices $({\sim}10^4)$ which was reduced from ${\sim}10^6$ before aging. Therefore, the enhanced long-term stability of our encapsulated OTFTs should be attributed to well protection of permeation of $H_2O$ and $O_2$ into the devices by the IBAD $SnO_2$ thin-film which could be used as an effective inorganic gas barrier for transparent organic electronic devices.

  • PDF

Hybrid Insulator Organic Thin Film Transistors With Improved Mobility Characteristics

  • Park, Chang-Bum;Jin, Sung-Hun;Park, Byung-Gook;Lee, Jong-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1291-1293
    • /
    • 2005
  • Hybrid insulator pentacene thin film transistors (TFTs) were fabricated with thermally grown oxide and cross-linked polyvinylalcohol (PVA) including surface treatment by dilute ploymethylmethacrylate (PMMA) layers on $n^+$ doped silicon wafer. Through the optimization of $SiO_2$ layer thickness in hybrid insulator structure, carrier mobility was increased to above 35 times than that of the TFT only with the gate insulator of $SiO_2$ at the same transverse electric field. The carrier mobility of 1.80 $cm^2$/V-s, subthreshold swing of 1.81 V/decade, and $I_{on}$/ $I_{off}$ current ratio > 1.10 × $10^5$ were obtained at low bias (less than -30 V) condition. The result is one of the best reported performances of pentacne TFTs with hybrid insulator including cross-linked PVA material at low voltage operation.

  • PDF

나노입자 자기조립 단일층을 이용한 유기메모리 소자 (Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles)

  • 정헌상;오세욱;김예진;김민근;이현호
    • 공업화학
    • /
    • 제23권6호
    • /
    • pp.515-520
    • /
    • 2012
  • 이 총설에서는 개별인식 태그와 바이오센서 등에 사용가능성이 높은 실리콘 기반의 캐패시터와 유기 박막트랜지스터 소자의 제작과 차이점이 논하여 진다. 금속이나 혹은 비금속의 나노입자는 화학물질이나 혹은 바이오분자, 즉, 단백질과 올리고 DNA 등에 표면이 싸여질 수 있으며, 상응하는 목표 바이오분자가 결합되어져 있는 절연체에 자기조립 단일층을 형성할 수 있다. 단일층으로 형성된 나노입자는 정전하 기본단위로서 유기 메모리 소자의 나노 플로팅 게이트로서 역할을 하는 것이다. 특히, 바이오분자의 선택적이고 강한 결합 메카니즘을 통하여도, 메모리 캐패시터나 유기 메모리 박막트랜지스터가 성공적으로 시연되었다. 더불어, 이러한 유기 메모리 소자는 차후 유연기판의 유기전자소자 영역의 발전을 촉진할 것으로 기대된다. 또한, 유기 메모리 박막트랜지스터는 앞으로 새로운 개념의 소자로의 적용이 가능하다.

A New AMOLED Pixel Circuit Employing a-Si:H TFTs for High Aperture Ratio

  • Shin, Hee-Sun;Lee, Jae-Hoon;Jung, Sang-Hoon;Kim, Chang-Yeon;Han, Min-Koo
    • Journal of Information Display
    • /
    • 제6권2호
    • /
    • pp.12-15
    • /
    • 2005
  • We propose a new pixel design for active matrix organic light emitting diode (AM-OLED) displays using hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs). The pixel circuit is composed of five TFTs and one capacitor, and employs only one additional control signal line. It is verified by SPICE simulation results that the proposed pixel compensates the threshold voltage shift of the a-Si:H TFTs and OLED.

A New AMOLED Pixel Circuit Employing a-Si:H TFTs for High Aperture Ratio

  • Shin, Hee-Sun;Lee, Jae-Hoon;Jung, Sang-Hoon;Kim, Chang-Yeon;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1297-1300
    • /
    • 2005
  • We propose a new pixel design for active matrix organic light emitting diode (AM-OLED) displays using hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs). The pixel circuit is composed of five TFTs and one capacitor, and employs only one additional control signal line. It is verified by SPICE simulation results that the proposed pixel compensates the threshold voltage shift of the a-Si:H TFTs and OLED.

  • PDF

유기반도체 트랜지스터의 유전체 표면처리 효과 (Dielectric Surface Treatment Effects on Organic Thin-film Transistors)

  • 임상철;김성현;이정헌;구찬회;김도진;정태형
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.202-208
    • /
    • 2005
  • The surface states of gate dielectrics affect device performance severely in Pentacene OTFTs. We have fabricated organic thin-film transistors (OTFTs) using pentacene as an active layer with chemically modified $SiO_2$ gate dielectrics. The effects of the surface treatment of $SiO_2$ on the electric characteristics of OTFTS were investigated. The surface of $SiO_2$ gate dielectric was treated by normal wet cleaning process, $O_2-plasma$ treatment, hexamethyldisilazane (HMDS), and octadecyltrichlorosilane (OTS) treatment. After the surface treatments, the contact angles and surface free energies were measured in order to analyze the surface state changes. In the electrical measurements, typical I-V characteristics of TFTs were observed. The field effect mobility, $\mu$, was calculated to be $0.29\;cm^2V^{-1}s^{-1}$ for OTS treated sample while those for the HMDS, $O_2$ plasma treated, and wet-cleaned samples were 0.16, 0.1, and $0.04\;cm^2V^{-1}s^{-1}$, respectively.

임피던스 측정법을 이용한 엑시머 레이져 열처리 Poly-Si의 특성 분석 (APPLICATION OF IMPEDANCE SPECTROSCOPY TO POLYCRYSTALLINE SI PREPARED BY EXCIMER LASER ANNEALING)

  • 황진하;김성문;김은석;류승욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.200-200
    • /
    • 2003
  • Polycrystalline Si(polysilicon) TFTs have opened a way for the next generation of display devices, due to their higher mobility of charge carriers relative to a-Si TFTs. The polysilicon W applications extend from the current Liquid Crystal Displays to the next generation Organic Light Emitting Diodes (OLED) displays. In particular, the OLED devices require a stricter control of properties of gate oxide layer, polysilicon layer, and their interface. The polysilicon layer is generally obtained by annealing thin film a-Si layer using techniques such as solid phase crystallization and excimer laser annealing. Typically laser-crystallized Si films have grain sizes of less than 1 micron, and their electrical/dielectric properties are strongly affected by the presence of grain boundaries. Impedance spectroscopy allows the frequency-dependent measurement of impedance and can be applied to inteface-controlled materials, resolving the respective contributions of grain boundaries, interfaces, and/or surface. Impedance spectroscopy was applied to laser-annealed Si thin films, using the electrodes which are designed specially for thin films. In order to understand the effect of grain size on physical properties, the amorphous Si was exposed to different laser energy densities, thereby varying the grain size of the resulting films. The microstructural characterization was carried out to accompany the electrical/dielectric properties obtained using the impedance spectroscopy, The correlation will be made between Si grain size and the corresponding electrical/dielectric properties. The ramifications will be discussed in conjunction with active-matrix thin film transistors for Active Matrix OLED.

  • PDF